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Abstract
The particle tracking code Zgoubi [1,2] is used for a broad

array of accelerator design studies, including FFAGs [3] and

EICs [4, 5]. In this paper, we describe recent work aimed at

improving Zgoubi’s speed and flexibility. In particular, we

describe a new implementation of the Zgoubi tracking algo-

rithm that requires significantly less memory and arithmetic.

And we describe a new algorithm that performs symplectic

tracking through field maps. In addition, we describe the

current efforts to parallelize Zgoubi.

ZGOUBI’S PARTICLE UPDATE
Zgoubi was originally developed in the 1970s as a spec-

trometer code. This heritage explains it’s focus on, and capa-

bilities for, detailed particle integration in spatially-varying

magnetic fields. Zgoubi’s particle update algorithm inte-

grates the Lorentz force equation, d �p/dt = q( �E + �v × �B),
for a charged particle in electric field �E and magnetic field
�B. For the independent variable, however, it uses distance
s along the particle trajectory. Using a prime (′) to denote
differentiation with respect to s, defining the normalized
velocity �u = �v/v, and expressing the particle momentum as

�p = mγ�v = q(Bρ)�u, (1)

where (Bρ) denotes the usual magnetic rigidity, Zgoubi
writes the Lorentz force Law in the form

d

ds
(Bρ)�u = (Bρ)′ �u + (Bρ)�u′ =

1

v
�E + �u × �B. (2)

Using this equation together with derivatives of the known

electric and magnetic fields, Zgoubi can construct the se-

quence of derivatives (Bρ)′, �u′, (Bρ)′′, �u′′, etc. Zgoubi then
uses these derivatives to update both position �r , and velocity
�u according to the Taylor series approximation

�r f ≈ �r + Δs �u +
Δs2

2!
�u′ + · · · +

Δs6

6!
�u(5), (3a)

�u f ≈ �u + Δs �u′ +
Δs2

2!
�u′′ + · · · +

Δs5

5!
�u(5). (3b)

The hierarchy of computations leading to the derivatives

(Bρ)(n) and �u(n) is very much like that used in the computa-
tions in truncated power series algebra (TPSA) [6, ch.39].

As a consequence, we can reimplement Zgoubi’s particle up-

date algorithm in a manner that reduces its memory footprint

by a factor of about three, and the arithmetic involved in the

particle update by a similar factor. In addition, a TPSA-like

update makes it easy to remove deeply nested conditionals
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that interfere with performance. We illustrate the idea for

motion in a purely magnetic field.

In the absence of an electric field, (2) reduces to the par-

ticularly simple form

�u′ = �u × �b, (4)

where �b denotes the magnetic field scaled by the magnetic
rigidity:

�b =
1

Bρ
�B. (5)

Successive s derivatives of �u are computed as

�u′′ = �u′ × �b + �u × �b′, (6a)

�u′′′ = �u′′ × �b + 2�u′ × �b′ + �u × �b′′, (6b)

etc., and successive s derivatives of �b are computed as

�b′ =
∑
i

∂�b
∂xi

ui, (7a)

�b′′ =
∑
i j

∂2�b
∂xi∂xj

uiu j +
∑
i

∂�b
∂xi

u′
i, (7b)

etc. Zgoubi then computes the �b(n) exactly as indicated: For
example, ∂2�b/∂xi∂xj is stored as three two-dimensional ar-
rays; ∂4�b/∂xi∂xj∂xk∂xl is stored as three four-dimensional
arrays; and so on. This approach greatly simplifies checking

the implementation: it is an easy matter to render the math

directly in code. But the many symmetries in those multi-

dimensional arrays means they are wasteful of both space

and computational effort. Zgoubi takes advantage of those

symmetries when populating the arrays, but not when com-

puting the expressions for the �b derivatives in (7). Moreover,
the sum over elements in a four-dimensional array involves

a deep nesting of loops.

One can instead store the collection of multivariate �b
derivatives as a linear array using Giorgilli indexing, exactly

as is done in standard TPSA algorithms [6, ch.39]. In ad-

dition, the terms u′
i , uiu j , and the like can be stored in a

similarly indexed linear array, so that as a consequence the

computations in (7) become easily optimized dot products

between pairs of vectors. This is similar to the evaluating

a truncated power series as a dot product between a vector

of coefficients and a vector of monomials. The only differ-

ence is that here what corresponds to entries in the vector

of monomials—e.g. the {u′
i, uiu j}—must be constructed to

include appropriate integer factors that account for the sym-

metries in the coefficients—e.g. the {∂�b/∂xi, ∂2�b/∂xi∂xj}.
If electric, or both electric and magnetic, fields are present,

the computation of the u(n) is more complicated, but the con-
clusion remains that refactoring the computation in TPSA-

like form yields significant computational benefits.
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PARALLELIZE ZGOUBI
The most obvious problem of Zgoubi is that it is a serial

code with little or no data parallelism. Developing a parallel

code is critical for exploiting modern architectures. Fortu-

nately, the recent Fortran standards have paved the way for

us with the introduction of Coarray Fortran (CAF) [7]. First

developed as an extension to Fortran 95, and now part of the

Fortran 2008 standard, CAF uses the Single Program Multi-

ple Data (SPMD) model of parallelization. A CAF program

launches a fixed (determined at run-time) number of copies,

called images, that run asynchronously. When declared in

the code, a coarray is a data structure whose data may be
shared between images. One declares a coarray simply by

appending square brackets to define the array’s codimension:

real, allocatable :: x(:,:,:)[:]

declares an allocatable array with three regular dimensions

and a single codimension. Access to data on a remote image

is then gained by reference to that image’s codimension.

In the context of single-particle dynamics, the use of coar-

rays is required only in those parts of Zgoubi that require

access to data on remote images. These are the data reduc-

tion operations—so, in the case of Zgoubi, the computations

of beam emittance, beam polarization, and the like. For such

computations, the CAF standard provides functions to ensure

data synchronization, analogous to barriers in MPI.

Case studies of modernizing and parallelizing Fortran 77

with CAF have shown that the resulting code exhibits good

scalability after optimization [8]. CAF has also proven to be

generally easy to write and maintain as compared to other

parallelization options [9].

SYMPLECTIC TRACKING
Of course another approach to improving Zgoubi’s per-

formance involves replacing Zgoubi’s particle update with

traditional symplectic integrators such as those described

in Forest’s 2006 review paper [10]. Those integrators have

been generalized to include spin [11]. We plan to implement

those integrators as options for the standard accelerator el-
ements in Zgoubi. Retaining Zgoubi’s traditional particle

update algorithm (albeit in a new, TPSA-like form) means

that users will still have access to Zgoubi’s detailed fringe-

field models, but they can use the optional fast integrators

where and when occasion warrants. Moreover, this approach

will make it easy to perform comparisons that test the impact

of the different integrators.

SYMPLECTIC FIELD MAPS
One can derive symplectic tracking algorithms from both

Hamiltonian and Lagrangian perspectives. Because Zgoubi

tracks the (normalized) velocity, we choose the Lagrangian

perspective. Marsden and West [12] give a useful (if dense)

introduction to this approach. The basic idea is to identify the

Lagrangian, write a discrete form of the action integral, and

then apply a discretized form of the Euler-Lagrange equa-

tions. The result of this process is a set of coupled difference

equations that describe the particle update. Moreover, the

resultant particle update is automatically symplectic. In very

simple cases, one can obtain an explicit algorithm, but in

most cases the result is implicit.

For a relativistic charged particle in a general static mag-

netic field, the Lagrangian (here with time as the independent

variable) has the form

L = −mc2
√
1 − �v 2/c2 + q �v · �A(�r). (8)

A corresponding discrete form for the action integral cover-

ing a time step of size h from �r0 to �r 1 is given by

Ad[�r 0, �r 1; h] = −h mc2

√
1 −

1

c2

(
�r 1 − �r 0

h

)2

+ q
(
�r 1 − �r 0

h

)
·

h
2

(
�A(�r 0) + �A(�r 1)

)
. (9)

The discrete Euler-Lagrange (dEL) equations can be written
in the form

−D1Ad[�r k, �r k+1; h] = D2Ad[�r k−1, �r k ; h], (10)

where D1 denote differentiation with respect to the first ar-
gument ofAd , and D2 denote differentiation with respect to

the second argument. The result of applying (10) to (9) is a
set of implicit equations that one can solve for �r k+1 in terms

of �r k−1 and �r k . This defines a symplectic particle update.

We applied our new symplectic particle update to the

Störmer problem—the motion of a charged particle in

Earth’s magnetic dipole field [13–15]. This problem has

significant nonlinearity, and the vector potential is known

analytically, making it a useful test case. In Figure 1 we show

a three-dimensional plot of the trajectory formed by a single

10MeV proton over the course of about 1600 cyclotron pe-

riods. In Figure 2 we show the error in the computed value

of the relativistic γ factor. The small oscillatory variation
is typical of symplectic integrators. Unfortunately, this ap-

proach does not work well at higher energies. In the case of

Figure 1: Trajectory of a 10MeV proton launched about

three Earth radii from the center with an initial velocity

pitched upwards about 24° out of the equatorial plane.
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Figure 2: Variation in the relativistic γ for the 10MeV proton

simulation shown in Figure 1.

static magnetic fields, the cure for this difficulty turns out to

be rather simple: Use the “non-relativistic” Lagrangian

L =
1

2
m∗�v2 + q �v · �A(�r), (11)

with m∗ ≡ mγ. This Lagrangian also yields the correct rela-
tivistic equation of motion. The corresponding symplectic

particle update derived from the discrete Euler-Lagrange

equation is much better behaved. In Figure 3, we compare

this new version of the dEL equations with the older version.
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Figure 3: Error in the relativistic γ for a 400MeV proton

gyrating in the Earth’s magnetic dipole field. The upper

graphic shows results obtained using the dEL equations de-

rived from the relativistic Lagrangian (8). The lower graphic

used dEL equations derived from the “non-relativistic” La-

grangian (11).

To fully implement symplectic tracking for field maps,

we must extract the vector potential from magnetic field

data. The Helmholtz decomposition theorem together with

the fact that a static magnetic field is both solenoidal and

irrotational allows us to write �A as the sum of a single pair

of surface integrals [6, ch.22]:

�At (�r) =
1

4π

∮
S

�G(�r , �r ′) [ �B(�r ′) × d�a ′], (12)

�An(�r) =
1

4π

∮
S

�K(�r , �r ′; �n ′) [ �B(�r ′) · d�a ′]. (13)

Here the kernels �G and �K are given by the relations

�G(�r , �r ′) =
1

|�r − �r ′ |
, (14a)

�K(�r , �r ′; �n ′) =
�n × (�r − �r ′)

|�r − �r ′ | [|�r − �r ′ | − �n ′ · (�r − �r ′)]
, (14b)

and �n ′ denotes an outward pointing unit vector at the point

�r ′ on the surface S. Because �K denotes the vector potential

of a Dirac monopole, and because integration is linear, the

integral �An automatically obeysMaxwell no matter howwell

or poorly we evaluate the integral. This property, however,

is not true for the term �At as written in the form (12). But

one may rewrite �At in the alternate form [6, ch.22]

�At (�r) =
1

4π

∮
S

�n ′ × (�r − �r ′)

|�r − �r ′ |3
ψ(�r ′), (15)

whereψ denotes the correspondingmagnetic scalar potential.
It can be shown that this form for �At obeys Maxwell inde-

pendent of how well or poorly we evaluate the integral (15).

The last piece piece of this puzzle, then, is that we must

gain access to themagnetic scalar potentialψ over the surface
S. Because the accuracy with which we know the scalar

potential does not affect the conclusion that our numerically

computed vector potential yields a Maxwellian magnetic

field, it can suffice to compute reasonable numerical values

for ψ on the basis of a multipole expansion that is fitted to
the known surface fields. Of course it is far too costly to

evaluate the actual integrals (13) and (15) at the location

of each particle. Because the symplectic tracking algorithm

also requires the matrix of derivatives ∂i Aj—and needs that

information in a form that is sufficiently smooth—the best

approach will be to compute the information (13) plus (15)

on an appropriate lattice within the range of interest, and

then use cubic splines, or similar, to compute the values and

derivatives of �A(�r) that are required during tracking.
The computation of the integrals (13) plus (15), and the

subsequent spline interpolation needs to be done just once

for any given magnet. It can therefore be done “offline”—

i.e. outside a given simulation—and the results stored for

later use.
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