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Abstract
The interaction of relativistic electrons with periodic con-

ducting structures results in radiation via a number of mech-
anisms. In case of crystals one obtains parametric X-ray
radiation, its frequency is determined by the distance be-
tween crystallographic planes and the direction of electron
beam. If instead of a crystal one considers a periodic struc-
ture of metallic wires with the spacing of the order of mm,
it is plausible to expect the emission of radiation of a similar
nature (“diffraction response”) at THz frequencies. Addi-
tionally, a “long-wave” radiation will occur in this case with
wavelengths much larger then structure periods.

In this contribution, we present different theoretical ap-
proaches for describing the electromagnetic radiation field
from prolonged electron bunch propagated in the lattice of
metallic wires. The validity of these analytical descriptions
is checked by numerical simulations. We discuss the possi-
ble applications of aforementioned structure as sources of
coherent THz radiation.

INTRODUCTION
The sufficiently short electron bunch traversing the lattice

of parallel conducting (metallic) wires can have wide enough
frequency spectrum containing wavelengths λ comparable
with the structure periodicity. The portion of the electro-
magnetic (EM) radiation related to these short enough wave-
lengths (“diffraction response” or “short-wave response”)
can be described using Bragg’s diffraction theory formalism,
similarly to the parametric X-ray radiation (PXR) in real
crystals [1]. Under the described conditions, the metallic
wire assembly can be referred to as a “wire crystal”.

If the array spacing is on order of millimeters, the re-
sulting quasi-Cherenkov radiation wavelength is in the
THz frequency range. This range is of significant inter-
est during last decade due to its prospective applications
in various areas. The portion of EM radiation related
to the low frequency part of spectrum (with relatively
long wavelengths) should be described using the “effective
medium” formalism, where the discussed wire assembly
is usually referred to as “wire medium”. This “long-wave”
response is of essential interest due to its non-divergent
properties predicted analytically [2]. In addition, analyt-
ical approach based on vibrator antenna theory can be
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Figure 1: Geometry of the wire structure and notations. PEC
plates used in simulations are indicated.

useful for describing the wire structure with finite length
wires.

In this paper, we first present the numerical simulations
(via CST PS code [3]) for the Gaussian bunch propagating
through the wire crystal (see Fig. 1) and show that both “long-
wave” and “short-wave” responses are generated. It should
be noted, that the simulation in CST requires the inclusion
of conducting plates in the model. These plates result in
parasitic reflections of the generated radiation, therefore al-
tering the results. To mitigate this effect, we increased the
transverse size of the simulation area. We then present re-
sults obtained via the aforementioned theoretical approaches
for describing the produced EM radiation field and com-
pare the analytical predictions with the numerical simula-
tions.

THEORETICAL MODEL
We consider a Gaussian electron bunch with the charge

density ρ,

ρ = q[
√

2πσ)]−1δ(x)δ(y) exp (−(z − υt)2/(2σ2)), (1)

moving along z-axis of the conducting wire array the with
length 2L and periods dx and dz ; see Fig. 1. Here σ is the
bunch length, υ = βc is the bunch velocity, c is the light
speed; corresponding charge current is j = υρez .

“Short-Wave” Response
Since the wire structure is periodic, it is similar to conven-

tional solid state crystals where the scattering occurs. It is
shown in Ref. [1] that for L →∞ in case of Bragg’s condi-
tion the wire structure is identical to diffraction crystal, and a
recipe to calculate the parameters of such “crystal” (periodic
coordinate-dependent “permittivity” ε(r), r = {x, y, z})
is given. The resulting quasi-Cherenkov EM radiation can
be described by a set of microscopic Maxwell’s equations
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with the material relation D = ε(r)E [4]. First, all val-
ues are presented in reciprocal space (as Fourier trans-
forms over wave vector k and frequency ω), e.g. E =∫

E(k, ω)eikr−iωtdkdω, resulting in the following relation:

D (k, ω) = ε0E (k, ω) +
∑

g,0
χ(−g) E (k + g, ω) , (2)

where ε0 is the “host” permittivity, χ(−g) and χ(+g) are crys-
tal susceptibilities, g are reciprocal vectors of the crystal.
When Bragg’s condition is satisfied for a particular recipro-
cal vector g = h, h2 = 2kh, one can use two-wave approxi-
mation and neglect all terms in the sum in Eq. (2) excluding
those for g = ±h. After a series of manipulations, the final
expressions for E(k, ω) can be obtained.

To return to coordinate-time space (and compare the ob-
tained results with CST simulations), the reversed Fourier
integrals should be calculated. This work is still in progress
and will be reported elsewhere. It should be also noted that
calculating the effective susceptibilities for the wire crystal
is an independent and rather complicated problem.

“Long-Wave” Response
As mentioned above, in the long-wave limit, λ �

dx, dz, r0, the structure shown in Fig. 1 for L →∞ is consid-
ered as a homogeneous medium described by the following
dielectric permittivity tensor possessing both frequency and
spatial dispersion:

ε̂ =
©­«
ε‖ 0 0
0 1 0
0 0 1

ª®¬ , ε‖ = 1 −
ω2

p

ω2 − c2k2
y

. (3)

Here ω2
p = 2πc2 [dxdzu)]−1, u depends in a complicated

manner on structural parameters. For the square lattice,
dx = dz = a and u = ln(a/r0) − C, where C ∼ 1 is some
constant.

Field components are determined in standard way by solv-
ing macroscopic Maxwell’s equations with tensor (3). The
details can be found in Ref. [2], where the nondivergent
nature of the generated radiation is discussed. Below we
compare these analytical results with CST simulations.

Vibrator Antenna Approach
If suppose that each wire of finite length is excited by the

field of flying charged bunch only, and is not affected by the
diffracted field, then the corresponding Hallen’s problem for
the current I(y) of each wire can be solved. In the simplest
quasistatic approximation and for β→ 1, we obtain for the
wire with coordinates z = zlm = mdz , x = xlm = ldx :

Ilm(y) = cUlm(y)[2Ω(y)]−1

Ulm = A sin(k0y)+C1(y) sin(k0y)+C2(y) cos(k0y) , (4)

Figure 2: Two-dimensional distribution of the absolute value
of electric field in the yz-plane (CST simulated result). Struc-
ture and bunch parameters: dx = dz = σ = 1cm, r0 = 1mm,
q = 1nC, E =34 MeV.

where

C1 =
2iC0
πk0

y∫
0

cos(k0ξ)ξ

ξ2 + x2
lm

dξ

C2 =
2C0
πik0

y∫
0

sin(k0ξ)ξ

ξ2 + x2
lm

dξ

Ω =
1

2π

π∫
−π

L∫
−L

dφdξ√
(y − ξ)2 + 4r2

0 sin2(φ/2)
,

in turn with the definitions C0 = qk0c−1 exp(ik0zlm −
ω2/ω2

σ), ωσ =
√

2c/σ, k0 = ω/c, and constant A is de-
termined from the boundary condition Ulm(L) = 0. After
that we obtain surface current jslm = Ilm/(2πr0) and can
calculate EM field produced by the wire using convolution
integral with Green function. Note that in the described
simplest approximation we have the following limitation for
the wire length: L � πσ/

√
2. Below we will compare this

result with corresponding CST result.

NUMERICAL SIMULATIONS
Numerical simulations were performed in CST Particle

Studio [3]. A Gaussian bunch propagates along z-axis, as
shown in Fig. 1, or the bunch trajectory can be rotated for
some angle in the xz-plane. Figure 2 shows two-dimensional
field distribution in the yz plane for the case of bunch prop-
agation along z-axis. Bunch length σ is chosen so that
“short-wave” part of the spectrum is strongly depressed. One
can clearly see that intensive EM field is generated near
metallic wires at the time of electron bunch flight near each
wire. These pulses correspond to “long-wave” response. Fig-
ure 3 shows comparison between CST simulations and the
analytical result obtained with the theory discussed above
in the corresponding subsection. As one can see, for long
enough bunch (with the spectrum containing mainly long
wavelengths) analytical results are in very good agreement
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Figure 3: Comparison between “long-wave” theory and CST
simulations for the behavior of the longitudinal electric field
Ez over time. Red line - CST result, blue line - analytical
result. Observation point is x = 10 cm, z = dz/2, y = 0,
other parameters are the same as in Fig. 2.

Figure 4: Two-dimensional distribution of the absolute value
of the electric field in the xz-plane illustrating generation
of the “short-wave” response during inclined bunch flight
through the wire structure. Structure parameters are the
same as in Fig. 2. Bunch length σ = 3 mm, angle of bunch
trajectory inclination is 34.6 grad.

with simulated ones. Hereafter we consider E=34 MeV elec-
tron bunch, which corresponds to the value of β = 0.9999 in
CST. The electron beam energy corresponds to the nominal
operational energy of FAST electron injector at Fermilab
motivating the prospective experimental attempt [5].

CST simulated results for the generation of “short-wave”
response are shown in Fig. 4. To illustrate this effect we
have rotated the bunch trajectory over certain angle and de-
creased bunch length σ so that bunch spectrum contains
wavelengths comparable with periods of the wire crystal.
One can see strong EM field concentration over several lines
formed behind the bunch due to diffraction. However, EM
field at these lines is several orders of magnitude weaker
compared to the “long-wave” response and the self field of
the bunch. Unfortunately, these results are difficult for inter-
pretation from the point of view of PXR-like theory: due to
the wide spectrum of the bunch field it is difficult to indicate
the specific “crystal plane” responsible for the mentioned
diffraction effects. Note that all simulations discussed above
were performed for the wires attached to the PEC planes
(see Fig. 1).

To clarify the process of radiation generation, we have
performed CST simulations for a single wire (disconnected
from the PEC planes) excited by the bunch moving along

Figure 5: Comparison between simulation and vibrator an-
tenna theory for the dependence of Ex field on time for
the case of a single wire with coordinates z = 0, x = dx .
Blue line - CST result, red line - analytical result. Other
parameters: σ = 7 mm, L = 4 mm, dx = dz = 1.5 mm,
r0 = 0.05 mm, E =34 MeV. Bunch trajectory goes along
z-axis. Observation point: z = y = 0, x = 1.5dx .

z-axis. Figure 5 shows the comparison between simulated
results and that obtained with the vibrator antenna described
above. Note, that due to the discussed limitation on wire
length, only a short vibrator can be analyzed at the moment.
In the future this constraint will be lifted by using a more
detailed theory. As one can conclude, presented curves are
in reasonable agreement. In a similar wave a string of wire
vibrators and two-dimensional lattice of vibrators can be
considered.

SUMMARY
We developed an initial analytical approach for calcu-

lation of the quasi-Cherenkov radiation field in the wire
crystals using conventional two-wave approximation. We
also implemented a numerical model of the wire crystal in
CST and compared the simulations against the vibrator an-
tenna approach. We note a very good agreement between
the theoretically predicted and simulated Cherenkov field at
E = 34 MeV beam energy. Further analytical considerations
of the problem will be reported in the near future.
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