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Abstract
Transversely modulated electron beams can be formed in

photo injectors via microlens array (MLA) UV laser shap-
ing technique. Microlenses can be arranged in polygonal
lattices, with resulting transverse electron beam modula-
tion mimicking the lenses pattern. Conventionally, square
MLAs are used for UV laser beam shaping, and generated
electron beam patterns form square beamlet arrays. The
MLA setup can be placed on a rotational mount, thereby
rotating electron beam distribution. In combination with
transverse-to-longitudinal emittance exchange (EEX) beam
line, it allows to vary beamlets horizontal projection and
tune electron bunch train. In this paper, we extend the tech-
nique to the case of different MLA lattice arrangements and
explore the benefits of its rotational symmetries.

INTRODUCTION
Emittance exchange beamline provides the mapping be-

tween (X,X′) ↔ (Z, δ′) phase spaces while (Y,Y′) phase
space being unaffected by the exchange. This technique is
commonly used for controllable longitudinal bunch train
generation in many applications [1–10].

A typical EEX setup consists of two dipoles (first “dog-
leg”) that followed by a time deflecting cavity (TDC1), which
is in turn followed by two more dipoles (second “dogleg”).
Under thin-elements approximation the transfer matrix of
the EEX beamline can be written as:

Rx→z =

*....
,

0 0 (L+Ld)κ η + (L+Ld)κζ
0 0 κ ζ κ
ζ κ η + (L+Ld)κζ 0 0
κ (L+Ld)κ 0 0

+////
-

.

Here L is the path length through the dogleg and Ld is the
path length between the dipole and the TDC. The transverse-
to-longitudinal transfer then can be explicitly written as:

z f = −
ξ

η
xi −

Lξ − η2

η
x ′i , (1)

where (η, ξ) are horizontal (vertical) dispersions, (xi, x ′i) is
the particle’s initial position in transverse phase space, z f is
the corresponding longitudinal coordinate. Thus, a modula-
tion in x-projection of the particle’s transverse distribution
will result in longitudinal density modulation. Note, that in
Eq. (1) longitudinal coordinate z takes very simple form and
doesn’t depend on geometrical parameters of the EEX setup
when x ′ = 0. Hereafter, we will use the dispersion values

of the Argonne Wakefield Accelerator (AWA) EEX beam-
line η = 0.9 m and ξ = 0.33 m [11]. Additionally, we will
assume the condition the waist x ′ = 0 in our simulations.

Recently a new method of forming multi-beam arrays of
electron beamlets using microlens arrays (MLAs) have been
reported [12]. With a combination of optical elements, such
a setup can produce arbitrary electron beam transverse mod-
ulation. Additionally, the setup allows for the beam pattern
rotation via MLA rotation, providing additional degree of
freedom in bunch train generation. In this paper, we explore
the effect of different beamlet arrangements prior to EEX
beamline on resulting longitudinal density modulation.

We investigated the patterns of electron beamlets depicted
in Fig. 1. A regular square lattice with a spacing of d = 2.5
mm shown in Fig. 1a was experimentally produced and sent
through the AWA EEX [13]. The multi-beam arrangement
presented in Fig. 1b can be formed via commercially avail-
able hexagonal MLAs. The patterns displayed in Figs. 1c an
1d could be generated with a laser mask at the photocathode
or tungsten mask in the beamline.

NUMERICAL SIMULATIONS
We now demonstrate our numerical method for the case

of square multi-beam lattice and the identical procedure
can be applied to other lattices. Consider a square lattice
of spacing d, then the radius vector of each point of the
lattice can be parametrized as r = d

√
n2 + m2, where n,m

are some integers. The x-coordinate of each lattice point
is then transformed as xm,n = (dn cos θ − dm sin θ) under
clockwise rotation transformation, where θ is the angle of
rotation. For a given (m, n) pair of numbers we generate the
resulting transverse density function as

F (x, θ) = F0
∑
m,n

e−
(x−xm,n )2

2σ2 , (2)

where F0 is the normalization constant and σ = 0.1 mm
which corresponds to the experimentally reported size of
electron beamlets in [12]. For the case of a square 5 × 5
lattice the transverse density function is shown in Fig. 2a.
In case of beam waist at the entrance of the EEX setup, the
transverse-to-longitudinal transformed density profile is then
F (z, θ) = −(ξ/η)F (x, θ) and the spectral content is defined
by:

F (ω, θ) =
∫

F (z/c)e−iωz/cd(z/c). (3)
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(a) Square lattice (d=2.5 mm) (b) Hexagonal lattice (d=1.7 mm) (c) Rhombic lattice (d) Circular lattice
Figure 1: Electron multi-beam distributions arranged in square, hexagonal, rhombic and circular (12 beamlets at 2.5-mm
radius) lattices.

A code to compute Eq. (3) for the lattices provided in
Fig. 1 was implemented in python. The resulting functions
F (z/c, θ) and F (ω, θ) are displayed in Fig. 2. Following a
convention, we will denote F (ω, θ) as a longitudinal bunch-
ing factor. Note, that this is a very simplified numerical
model that doesn’t include the effects of beam charge, emit-
tance and longitudinal energy spread. These studies go be-
yond the scope of this paper and will be reported elsewhere.
It should be noted, however, that the lattice spacing and the
gaussian beamlets size was selected based on the previosuly
obtained experimental data.

RESULTS
As it can be inferred from Fig. 2 the multi-beam rotation

technique can generate tunable multi-beams. For the case
of a square arrangement, given the symmetries of the initial
laser distribution, a rotation within 0-π/4 is sufficient to ex-
plore the entire possible frequency range. However, since
the intensity of the laser beamlets in practice may be not
consistent within multi-beam array, it is plausible to perform
full 0-π/2 rotation. An upright square multi-beam orien-
tation results in 5 nominal peaks displayed in Fig. 2a. In
this case, the bunch train separation generated by the EEX
setup is equal to τ = 4.5 ps. As it can be inferred from
Fig. 2b, the corresponding bunch train time separation at
θ = π/4 is shrunk by factor of

√
2. Interestingly, the peculiar

modulation is generated around θ = 26 deg. The resulting
bunching factor F (ω, θ) is presented in Fig. 2c and it has a
distinct “fishing net”-like structure. It can be concluded that
in the case of a square multi-beam lattice one can generate
multiple frequencies of the density modulation via pattern
rotation.

In the case of hexagonal lattice the density modulation
is depicted in Fig. 2d. One should note this type of a lat-
tice generates triangular current profile envelope. Similar
current profile may be obtained at θ = π/4 with a square
lattice. When rotated (see Fig. 2e) it forms a complicated
structure due to compactness of the hexagonal lattice. Well
defined density modulation can be seen around θ = π/3. The
resulting bunching factor, presented in Fig. 2f forms a pecu-
liar “tortoise”-like structure. One can note the well-defined
harmonics in the spectrum around ω = 1 THz, however,

higher-frequency harmonics have significantly smaller am-
plitudes. In conclusion, hexagonal lattice can serve for a
single-frequency bunch train generation.

The rhombic lattice depicted in Fig. 1c due to its initial xy
correlation forms an interesting time profile with increasing
modulation wavelength with increasing angle θ; see Fig. 2h.
This method results in “color gradients” in the longitudi-
nal bunching factor; see Fig. 2i. Due to the large number
of parameters of the lattice, it may be optimized for a spe-
cific gradient. Additionally, many features may arise in the
spectrum due to the complexity of the lattice.

A circular lattice presented in Fig. 1d results in the density
modulation profile Fig. 2j which contains multiple modu-
lation wavelengths. When rotated (see Fig. 2k) it forms a
feature-rich structure that results, for instance in two- and
three color radiation frequencies. The shape of the bunching
factor is similar to the case of a hexagonal lattice. However,
due to regularity of the features, this type of the multi-beam
arrangement can be potentially interesting for the improve-
ment of the FEL performance similarly to Ref. [14].

SUMMARY
We demonstrated a simple technique for bunch train gener-

ation in the EEX setup using a rotation of the MLA-produced
transverse multi-beam array. In particular, we investigated
four different multi-beam formations (square, hexagonal,
rhombic and circular) under the feasible beam conditions.
We found that square and hexagonal lattices can produce
different frequencies in the longitudinal density modulation
dependent on the angle of rotation. We also considered a
rhombic lattice for the “color-gradient” longitudinal spectral
content. In case of a circular lattice it was found that two-
and three-color modulation can be obtained. We note that
the presented method is not limited by the selected lattices.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: The x-projection of transverse density distribution for θ = 0 degrees (left column), the x-projection as a function
of rotation angle θ (middle column), resulting electron bunch spectral content after the EEX as a function of rotation angle
θ (right column) for the case of square, hexagonal, rhombic and circular lattices (top to bottom).
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