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Abstract

The Taiwan Photon Source (TPS) is a low-emittance 3-
o GeV light source at National Synchrotron Radiation
‘= Research Center. Five in-vacuum undulator beamlines
gwere delivered to users on Sept.22, 2016. In phase-I
£ insertion device (ID) commissioning, the local bump was
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& used to do ID spectrum optimization. After this procedure,

£ the ID spectrum are consistent between simulation and
2 measurement. Recently, we found the local bump will
5 cause tune shift, orbit distortion, and vertical dispersion
Z by simulation in TPS. These results will be presented in
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INTRODUCTION

TPS [1] storage ring is composed of 24 DBA cells.
There are 18 short straight sections (7m) and 6 long
straight sections (12m) in storage ring. Three long straight
sections are symmetrically configured as double mini-By

» lattice. Figure 1 shows the locations of phase-I and phase-
I IDs in TPS.
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Figure 1: Locations of phase-I and phase-II IDs in TPS
storage ring.

In the phase-I ID commissionig [2], a local bump, as
illustrated in Fig.4, was used to optimize the ID radiation
spectrum. The local bump, combined with the double
crystal monochromator (DCM) of the beamline, was used
g to scan the ID spectrum. For each orbit bump (position
5 or angle), the DCM was used to scan photon energy.
g After scanning the position and angle bump, the
= horizontal and vertical orbit were set to the peak of
%the highest energy curve. According to the formula of
£ radiation wavelength for an undulator, the weaker the
umagnetlc field, the shorter the undulator radiation
Bwavelength That means the electron orbit traverse
£ through the field center of the ID. Figure 2 and 3 show
£ electron orbit after the optimization of ID spectrum.
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As shown in Figs. 2 and 3, several orbit bumps across
quadrupole and sextupole magnets. These orbit bumps
will cause tune shifts, orbit distortion and vertical
dispersion in the storage ring due to feed-down effects.
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Figure 2: Horizontal orbit after spectrum optimiztion.
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Figure 3: Vertical orbit after spectrum optimization.

LOCAL BUMP

Figure 4 depicts the local bump used to optimize the ID
radiation spectrum. The local bump is created by 4
correctors named Cl~ C4, adjacent to both sides of ID.
These 4 corrector dipoles are trim coils wound on the
sextupole magnets S5 and S6, respectively. X and Y are
the horizontal and vertical bump height, respectively. X’
and Y’ are the horizontal and vertical bump angle,
respectively.
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Figure 4: A schematic layout of local bump created to
optimize the radiation spectrum of ID.

As shown in Fig. 4, the orbit bump spans across the
quadrupole and sextupole magnets. Therefore, the feed-
down effects due to orbital offsets in quadrupole and
sextupole are created.
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FEED-DOWN EFFECTS
The magnetic fields of a quadrupole are given by
B, = (Bp)K1y, B, = (Bp)Kix (H
, where K is the quadrupole strength, and Bp is the beam
rigidity.
Considering a horizontal orbital offset, we substitute x
with x + Ax in Eq. (1), we have
B, = (Bo)K,y @)
B, = (Bp)K,4x + (Bp)K;x 3)
The first term of B, in Eq. (3) is a dipole filed, which
results in the horizontal orbit distortion.
For a vertical orbital offset, we have
B, = (Bp)K,4y + (Bp)K,y )
B, = (Bp)Kix %)
The first term of B, in Eq. (4) is a dipole filed, which
results in the vertical orbit distortion.

The magnetic fields of a sextupole are given by
By, = (Bp)Kyxy, By, = (1/2)(Bp)K,(x* —y*) (6)
, where K2 is the sextupole strength, and Bp is the beam
rigidity.
For a horizontal orbital offset, we have

B, = (Bp)K,yAx + (Bp)K,xy @)
B, = (Bp)KpxAx + (1/2)(Bp)K, (x* — y?)
+(1/2)(Bp)K,Ax? (8)

The first terms of B, and B, in Eqgs. (7) and (8) are
quadrupole fields, which result in tune shifts in both
planes. The third term of B, in Eq. (8) is a dipole field,
which results in horizontal orbit distortion.

For a vertical orbital offset, we have

B, = (Bp)K,xAy + (Bp)K;xy ©))
B, = (Bp)K,yAdy + (1/2)(Bp)K,(x* — y*)
—(1/2)(Bp)K,4y? (10)

The first terms of B, and B, in Eqgs. (9) and (10) are skew
quadrupole fields, which result in the betatron coupling.
The horizontal closed orbit distortion (COD) and
dispersion will be coupled to vertical plane. The third
term of B, in Eq. (10) is a dipole field, which results in
horizontal orbit distortion.

EFFECTS OF HORIZONTAL BUMPS

Figure 5 shows 20 horizontal orbit bumps ranging from
-1 to 1 mm with an increment step of 0.1 mm. Figure 6
shows the corrector strength versus bump height. Figure 7
shows the tune shift versus horizontal bump height. The
tune shifts simulated by Tracy [3] are 0.02352 and -
0.01098 at a bump height 1 mm in the horizontal and
vertical plane, respectively. The value of simulated tune
shifts Ay, are consistent with the ones calculated by the
formula.

Ak s+l

Avyy =007 Bey($)ds , Ak=KAx (1)
, where K2 is the sextupole strength, and Ax is the orbital
offset in sextupole magnet.

Figure 8 shows the horizontal dispersion functions
associated with 20 horizontal orbit bumps when the
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Figure 5: Twenty horizontal orbit bumps ranging from -1
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Figure 6: The horizontal corrector strength versus bump

height.

Figure 7: The tune shift versus horizontal bump height.
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Figure 8: The horizontal dispersion functions associated
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with 20 horizontal orbit bumps in the simulations.
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EFFECTS OF VERTICAL BUMPS

Figure 9 shows 20 vertical orbit bumps ranging from -1
Eto 1 mm with an increment step of 0.1 mm. Figure 10
2shows the corrector strength versus vertical bump height.
”g Figure 11 shows the tune shift versus vertical bump
Eheight. The tune shift is very small. Figure 12 shows the
f vertical dispersion generated from the skew quadrupole,
S K>Ay, a feed-dwon effect from the vertical orbital offset
E in sextupole magnets.
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+ Figure 9: The vertical orbit bumps ranging from -1 to 1
£ mm with an increment step of 0.1 mm.
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Figure 11: The tune shift versus vertical bump height.
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Figure 12: The vertical dispersion generated from the

feed-down effect of a vertical orbital offset in sextupole
magnets.

For a vertical bump height 1 mm,the horizontal orbit
distortion generated from the feed-down effect of a
vertical orbital offset in sextupole magnetsis shown in
Fig. 13.
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Figure 13: The horizontal orbit distortion generated by
the feed-down effect of a vertical orbital offset 1 mm in
sextupole magnet.
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SUMMARY

In phase-I ID commissioning [2], the local orbit bumps
were used to optimize the radiation spectrum of ID. After
the optimization procedures with local bumps across IDs,
the measured radiation spectra of ID are consistent with
the simulations. The optimization procedures also create
non-neglible orbital offsets in quadrupole and sextupole
magnets adjacent to the ID. The feed-down effects of
quadrupole and sextupole magnets generte the tune shifts,
orbit distortion, and vertical dispersion. These deleterious
feed-down effects can be minimized if we choose to align
the beamline with respect to the ID instead.
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