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Abstract

In this paper we describe a parallel, large-scale simu-

lation capability using a Lienard-Wiechert Particle-Mesh

(LWPM) method. The approach is a natural extension of the

convolution-based technique to solve the Poisson equation in

space-charge codes. It provides a unified method to compute

both Coulomb-like self-fields and radiative phenomena like

coherent synchrotron radiation (CSR). The approach brings

together several mathematical and computational capabil-

ities including the use of integrated Green function (IGF)

methods and adaptive quadrature methods. We will describe

the theoretical model and our progress to date.

INTRODUCTION

The simulation of beam dynamics in particle accelerators

has undergone tremendous advances in recent years. There

now exist several massively-parallel multi-physics codes that

include 3D space-charge effects. Despite advances in space-

charge modeling, the simulation of 3D radiative phenomena

such as coherent synchrotron radiation (CSR) has remained

an outstanding problem. Yet the ability to accurately model

CSR has become a key issue due to the growing importance

of accelerators involving bright electron beams, e.g., the

drivers for X-ray Free Electron Lasers (XFELs).

Previously the authors have reported on a Lienard-

Wiechert (LW) method to compute electromagnetic fields

[1,2]. In this paper that method is extended to self-consistent

modeling using a technique we call the Lienard-Wiechert

particle-mesh (LWPM) method. As will be shown the

method is a natural extension of techniques that have previ-

ously been used to model 3D space-charge effects.

SPACE-CHARGE SIMULATION

Existing space-charge codes typically solve Poisson’s

equation in the bunch frame by some method, compute the

self-fields, and transform back to the lab frame. The self-

fields are then used along with external fields to advance the

particles. The most widely used approach to compute the

self-fields is a convolution method with free-space boundary

conditions [3]. The scalar potential in the bunch frame is,

φ(r) =
1

4πεo

∫
dr

′ρ(r′)G(r − r
′), (1)

where ρ is the charge density and where the free-space Green

function for φ is,

G(r − r
′) =

1

|r − r′ |
. (2)
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A simple discretization of Eq. (1) leads to,

φi, j,k =
δxδyδz

4πεo

i′
max∑
i′=1

j′
max∑
j′=1

k′
max∑
k′=1

ρi′, j′,k′Gi−i′, j−j′,k−k′, (3)

where (δx, δy, δz) is the grid cell size, ρi, j,k is the charge den-

sity at the grid points, and Gi−i′, j−j′,k−k′ denotes G at values

of grid point separation. Fast Fourier transforms (FFTs) can

then be used to efficiently compute the convolution by ap-

propriate zero-padding [4]. Hence the solution of Eq. (3)

is,

φi, j,k =
δxδyδz

4πεo
F−1{(F ρi, j,k)(FGi, j,k)} (4)

where F denotes a forward FFT and F−1 denotes an inverse

FFT.

The discrete convolution, Eq. (3), is a simple approxima-

tion to Eq. (1). It makes use of G only at the grid points even

though it is known everywhere analytically. This can lead

to serious inaccuracy when ρ and G have disparate spatial

variation, as is often the case with high aspect ratio grids.

There may also be difficulties dealing with the singularity.

These problems are solved by using integrated Green

functions (IGF’s) [5–8]. In this approach a simple analytical

form is assumed for the variation of ρ within a cell, and the

convolution integral is performed analytically for each cell

of the problem. As a result, the accuracy is controlled by

how well the discretization resolves ρ, not G.

To summarize, the usual treatment of space charge in-

volves solving the Poisson equation in the bunch frame using

a convolution method with an IGF. Similarly, one may ob-

tain the fields directly (not from the potential) by replacing

Eq. (2) with the Green function for the fields,

G(r − r
′) =

r − r
′

|r − r′ |3/2
. (5)

at the expense of performing more FFTs.

LIENARD-WIECHERT SIMULATION

Now consider the Lienard-Wiechert (LW) fields,

�E =

[
q

γ2κ3R2

(
n̂ − �β

)
+

q

κ3Rc
n̂ ×

{(
n̂ − �β

)
×
∂ �β

∂t

}]
ret

�B = (1/c)n̂ret × �E . (6)

where n̂ = �R/|R| is a unit vector pointing from the retarded

emission point to the observation point, �β = �v/c, c is the

speed of light, γ = 1/
√

1 − β2, and κ = 1 − n̂ · �β.
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The transition to LW modeling begins by noticing that the

space-charge method is equivalent to using a LW approach,

ignoring the radiation term, and replacing the velocity term

involving retarded quantities with the Heaviside expression

involving instantaneous quantities. The Heaviside expres-

sion is,

E =
1

γ2r2

r̂(
1 − |β × r̂|2

)3/2 , (7)

where r̂ points from the (instantaneous) emission point to

the observation point.

In other words, convolution-based codes that solve Pois-

son’s equation in the bunch frame and transform back to the

lab frame are using the same physical model as if they used

Eq. (7) in the lab frame. These codes have two omissions:

First, they ignore the radiation term. Second, they don’t

correctly calculate the Coulomb term in dipole magnets, be-

cause the Heaviside expression assumes a particle moving

in a straight line at constant velocity.

To remedy these omissions we use the full LW expression

for the fields of a point charge. The solution of Poisson’s

equation in free space can be expressed exactly as a convo-

lution involving difference variables. But in a particle-mesh

(PM) code it’s approximate since, to be exact, all particles

would have to be moving exactly in the same direction at the

same energy, as is evident by γ and β appearing in Eq. (7).

In the LWPM method we approximate the fields as a con-

volution although strictly speaking this is an approximation

whose validity is problem dependent. Furthermore, we take

the convolution kernel to be the LW field of the bunch cen-

troid. As a result it is necessary to keep track of the history

of just the centroid, not all the simulation particles. This

represents a significant savings in memory compared with a

point-to-point (with history) LW code.

THE LW3D CODE

We have developed a prototype of a code, called LW3D,

for 3D self-consistent simulation using the LWPM method.

It makes use of several algorithmic and computational tech-

nologies:

• Domain decomposition

• Parallel FFT of distributed data [9]

• Integrated Green function (IGF) methods

• Numerical IGFs

• Efficient trajectory integration with adaptive step size

(for retarded quantities)

• Adaptive quadrature [10]

Traditionally, the use of an IGF has been possible because the

integral over a computational cell of the free-space Coulomb

Green function or the Green function for the fields can be

found analytically. This is not possible for the LW Green

function. To deal with this, we use a numerically integrated

Green function (nIGF) method. In this method an adaptive

quadrature package (also known as adaptive cubature in

the multi-dimensional case) is used to perform the definite

integrals of the Green function over the problem cells.

In a space-charge code the computational bottleneck will

depend on the problem parameters but often it is associated

with inter-node communication in the space-charge com-

putation. The time spent calculating the Green function,

Eq. (7), at all values of grid point separation, is minor. If

the IGF is used the effort is somewhat larger but still not

dominant. In contrast, an LWPM code must evaluate Eq. (6).

This is computationally demanding due to the need to find

the retarded quantities for every tabulated value of the LW

Green function based on the history of the centroid. Domain

decomposition is essential to distribute the computational

load. The calculation in Eq. (6) requires no communication,

so an LWPM code is ideally suited to computer architectures

that favor high FLOPS with little data movement.

RESULTS

Consider a 1 nC, 1 GeV cold Gaussian bunch propagating

in a drift space and expanding due to it’s space-charge field.

The bunch has rms size σx = σy = σz = 1 mm in the bunch

frame. Using the convolution, Eq. (3), we have modeled

this using the following different methods for computing the

Green function:

• Analytic IGF: Using the IGF for Eq. (7)

• Heaviside nIGF: Using Eq. (7) with adaptive quadrature

• LW nIGF: Using Eq. (6) with adaptive quadrature

Analytic IGF is what is used in existing space-charge

codes such as IMPACT. Heaviside nIGF is essentially a test

of the adaptive quadrature package. LW nIGF tests both

the quadrature package and tests the software that computes

retarded quantities and the resulting LW field, Eq. (6). Note

that the LW nIGF method is used here only as a test of the

software, i.e., one would never use retarded quantities (that

are time-consuming to compute) when one could use in-

stantaneous quantities, as is the case when the Heaviside

approximation is valid. But as a test of the computational

method, this is a challenging regime for the LW nIGF model.

The computation of retarded quantities in this 1 GeV exam-

ple involves retarded positions that are more than 100 ns (i.e.

more than 30 m) behind the bunch.

Figure 1 shows the horizontal rms beam size, xrms, as a

function of z. All three methods exhibit the same growth in

beam size. (The analogous plots for y and z look the same.)

This gives confidence in the adaptive quadrature method

for the IGF and in the calculation of retarded quantities.

Rather than looking at rms size, the rms emittance provides

a more sensitive diagnostic. Figure 2 shows the horizontal

rms emittance growth. Again, all three methods agree. This

is an important test since one of the primary purposes of

such simulations is to estimate rms emittance growth. This

demonstrates that, in this example for which the a space-

charge model and the LWPM should agree, the two methods

predict the same rms emittance growth.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK044

THPAK044
3314

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and EM Fields
D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments



Figure 1: xrms versus t for a 1 GeV, initially cold Gaussian

electron beam in a drift space. The Green function was

calculated three different ways as described in the text. All

the curves lie on top of each other.

Figure 2: εx versus t for a 1 GeV, initially cold Gaussian

electron beam in a drift space. The Green function was

calculated three different ways as described in the text. All

the curves lie on top of each other.

FUTURE WORK

Having verified that the LWPM method works for a beam

expanding in free space, we are now in the process of testing

it for a steady-state dipole model and for a chicane model.

We expect that the singularity in the LW radiation term at

high γ will have to be treated with care. However, previous

results have already shown that that a convolution-based

approach agrees with brute force LW summation in certain

test cases [2]. We have now begun to implement a 3D,

self-consistent simulation of the Berlin-Zeuthen benchmark

using the LWPM method [11].

CONCLUSION

The 3D simulation of radiative phenomena like CSR re-

mains an outstanding problem despite the major advances in

3D space-charge modeling. In this paper we have described

an approach – the LWPM method – that is a natural exten-

sion of the space-charge approach. We have shown that a

simulation based on calculation of LW retarded quantities

produces essentially the same results as a Heaviside model

(the space-charge model) for a beam expanding in free space.

This is the case even at high γ, where the computation of re-

tarded quantities is potentially difficult and where the Green

function is highly singular. Given these results, the LWPM

method holds great promise for the simulation of 3D phe-

nomena in more complex systems like bunch compressors.

At this time we are preparing to perform 3D simulations of

the Berlin-Zeuthen benchmark chicane.
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