
PERFORMANCE OPTIMIZATION OF A BEAM DYNAMICS PIC CODE
ON HYBRID COMPUTER ARCHITECTURES

Zhicong Liu1∗, Ji Qiang†, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
1also at Key Laboratory of Particle Acceleration Physics and Technology,

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract
The self-consistent multi-particle tracking based on

particle-in-cell method (PIC) has been widely used in par-
ticle accelerator beam dynamics study. However, the PIC
simulation is time-consuming and needs to use modern paral-
lel computers for high resolution applications. In this paper,
we implemented and optimized a parallel beam dynamics
PIC code on two types of hybrid parallel computer architec-
tures: one is the GPU and GPU cluster, while the other is
the “Knight Landing” CPU cluster.

INTRODUCTION
The particle-in-cell (PIC) method is widely used as the

self-consistent space charge solver in the simulation codes
in the accelerator community [1–7]. The PIC code is usually
computationally expensive. A number of parallel quasi-
static PIC codes using Message Passing Interface (MPI)
had been developed in the accelerator community for high
intensity/high brightness beam simulations [2–5].

The Graphics Processing Unit (GPU), which was origi-
nally developed for computer graphics and video game, now
becomes a general-purpose computer processor [8]. In con-
trast to the Central Processing Unit (CPU), one GPU contains
several hundreds or even thousands of cores , as shown in
Fig. 1 . The Compute Unified Device Architecture (CUDA)
library is a parallel computing platform and programming
model for GPUs developed by the NVIDIA [9]. It enables a
fast implementation of numerical model on GPUs and dra-
matically increases computing performance by harnessing
the power of the GPU.

Following the previous work [10–13], a multi-particle
tracking code based on PIC method is under development
using CUDA running at both single GPU and GPU cluster.
Using a single home-use GPU GTX 1060, the code speeds
up by more than 50 times compared with that running on
an AMD Opteron 6134 CPU core. Also, it shows good
scalability on a cluster when particle number is large.

Besides the GPU implementation, the code is also ported
and tuned on an advanced CPU cluster - Cori Knight Land-
ing(KNL), which is based on the Intel Many Integrated Core
(MIC) Architecture. The implementation and test on single
GPU and different clusters give a comprehensive evaluation
of the performance of PIC code on different hybrid computer
architectures.
∗ liuzhicong@ihep.ac.cn
† jqiang@lbl.gov. Work supported by the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231 and the Ministry of Science and
Technology of China under Grant No.2014CB845501.

Figure 1: GPU vs CPU

In this paper, after the Introduction, the GPU implementa-
tion of PIC code, especially the parallel particle reordering,
is presented in Section 2. After that, the performance of
the tracking code running on single GPU, GPU cluster, and
CPU cluster is presented in Section 3. Finally, conclusions
are drawn in Section 4.

PIC CODE ON GPU
In a typical PIC method, the particles are deposited onto

the grid points firstly. Then, the field at grid points is ob-
tained by solving the Poisson equation using the Fast Fourier
Transformation (FFT). Finally, the particles are pushed and
kicked by the electromagnetic field. The loop continues until
we attain enough number of steps. When porting the PIC
method onto hybrid multi-core architecture, the second and
third steps are similar to a regular serial PIC code. However,
as to the first step (depositor) using multi-thread, the race
condition rises and may lead to wrong results. To avoid the
race condition, it’s necessary to reorder the particle before
the depositor at each steps by dividing the girds into smaller
tiles.

To reorder the particles, firstly, the arrays nhole and
ndirec are declared to handle the indices and the number of
particles that would leave the current tile to each direction,
as shown by the orange arrows in Fig. 2. The nhole is
pre-allocated at given size, which determines the maximum
number of particles leaving these current tiles. The size is
calculated by the available GPU memory size.

Secondly, the particles leaving a tile are copied into an
ordered global buffer: pbuff. With a running sum to the
ndirec, we can know the memory address where we would
put the particles to, so the particles going to the same direc-
tion are stored contiguously.

Thirdly, for each tile, we could know how many particles
would move in and where they are located in pbuff by the

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK043

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques

THPAK043
3309

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Tile Tile

Buffer

Figure 2: Particle reordering.

nhole and ndirec of the neighbor tiles. If there is a particle
that leaves this tile, the hole left would be filled by incoming
particle firstly. After all holes are filled, the particle data is
written at the end of the array. If there are still holes after
we wrote all incoming particles, the last several particles are
moved to fill the holes.

In this way, we ensure that the particles are ordered in this
tile and always occupy a continues memory. After reorder-
ing and depositing the particles onto the grid, the next step is
to solve the Poisson equation on the grid. In the GPU imple-
mentation, we use NVIDIA’s CUDA Fast Fourier Transform
Library (cuFFT) [14] to do this.

We tested domain decomposition parallel method by using
multi-GPUs to process different spatial sub-domains, so each
GPU would have less computation and thereby the speed
of the program would be increased. However, domain de-
composition requires communication among different GPUs.
Since the GPUs cannot directly exchange information among
each other currently, especially between different nodes, we
need to copy the data from the GPU back to the CPU mem-
ory and communicate on the CPU side, which will takes
extra time. So the efficiency of the domain decomposition
parallel method will depend on the balance of extra data
moving time and the reduced computation time. Accord-
ing our test, domain decomposition parallel method doesn’t
show any advantage.

PERFORMANCE
The performance of PIC code was tested on a single GPU,

GPU cluster Titan and CPU cluster Cori Knight Landing [15,
16]. In the following of this section, the performance running
on each computer platform is presented.

Single GPU Speedup
The speed of the PIC code running on single GPU is

tested firstly. The GPU code uses an NVIDIA GeForce GTX
1060 6GB. For comparison, the CPU code runs on an AMD
Opteron(TM) Processor 6376, 2.3GHz. The speedup is
calculated by the CPU runtime divided by the GPU runtime.
In this performance test, the grid number is 64 × 64 × 64
while the particle number varies from 16 thousand to 1.6
million.

As shown in Fig. 3, generally, we achieved a speedup of
more than 40 for the whole PIC code. The speedup of the

Poisson solver, colored as orange in Fig. 3, is about 64 and
almost keep constant as expected. The speedups of some
other functions, like depositor, kicker, pusher, and output,
become larger as the increase of particle number.

The depositor of GPU code also includes the particle re-
ordering operation. Because of the irregularity of reordering,
the speedup of depositor is relatively low. The diagnostic
output also contains the calculation of the statistics of the
beam parameter, and the reason for low speedup is due to
the limit of output bandwidth. The relatively small speedups
for depositor and output reduce the speedup of the entire
code.

0
10
20
30
40
50
60
70
80

16k 64k 160k 640k 1.6m

Sp
ee

du
p

Number of particles

depositor poisson solver pusher kicker output total loop

//

Figure 3: The speedup of PIC Code using single GPU.

The speedup of the total time decreases when the par-
ticle number becomes larger. The reason is that the time
consumed by the depositor, which has a lower speedup, dom-
inates when the particle number becomes larger.

Overall, we attain a speedup of more than 60 for the Pois-
son solver, and about 40 for the whole code using a home-use
GPU. This is about two times faster than its MPI version
running on a 64 cores computer.

GPU Cluster Speedup - Titan
After testing on a single GPU, a scaling test for PIC code

on GPU cluster was done on TITAN. Figure 4 shows the
results with 1.6M particles. The total time decreases with
more GPUs, and reach minimum at 32 GPUs. The reason
is that the time consumed by pusher, kicker, and depositor
dominates in the large particle number case, which can be
well speeded up by multi-GPUs.

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64

Ti
m
e 
(s
)

Number of GPUs

depositor poisson solver pusher&kicker output total loop

Figure 4: The scalability of the PIC code using 64× 64× 64
grid points and 1.6M particles on Titan.

However, when we try a even larger number of particles,
16M particles, we cannot run the code on only 1 or 2 GPUs,

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK043

THPAK043
3310

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques



as seen in Fig. 5. It should be noted that the problem size
is limited by the GPU memory size. Unlike CPU memory,
which can be easily extended, the GPU memory is fixed in a
given GPU model. Ideally, for a GPU with a memory size
of 6GB, the maximum particle number is about 60M with a
uniform distribution. But it is difficult to reach this number
because it’s more common to use a WaterBag, or a Gaussian
distribution instead of a uniform distribution in most of the
accelerator applications. Except for efficiency, the limit by
memory size is another reason why we need multi-GPUs.

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64

Ti
m
e 
(s
)

Number of GPUs

depositor poisson solver pusher&kicker output total loop

Figure 5: The scalability of the PIC code using 64× 64× 64
grid points and 16M particles on Titan.

CPU Cluster Speedup - Cori-KNL
Besides GPU cluster, the PIC code is also ported and

tested on Cori Knight Landing(KNL), a hybrid supercom-
puter based on MIC technology. The OpenMP(OMP) di-
rectives were added to the original pure MPI code to adapt
to the Intel Many Integrated Core (MIC) architecture. The
new hybrid MPI+OpenMP PIC code uses fine-grained paral-
lelism, and the balance between MPI rank size and OpenMP
threads number at given number of cores is finely tuned. For
the potential race condition at some subroutines, like depos-
itor, the OpenMP intrinsic reduction and atomic operator
is used. Aa strong scaling test was done using gradually
increasing number of nodes with different problem sizes. It
should be noted that the Cori Knights Landing has 68 CPU
cores per node, however, we only used 64 cores per node for
easier comparison.

Using pure MPI, the code shows a good scalability in
Fig. 6, where the abscissa is the number of nodes, and the
left ordinate is time by seconds, while the right ordinate is
memory usage by GB. The total time decrease first and reach
minimum on 32 nodes, after which the total time starts to
increase, and the time for communication dominates.

The comparison of total time and memory usage by pure
MPI(OMP=1), OMP=2, and OMP=4 is shown in Fig. 7. The
difference is small. But for some case, like node = 16, the
pure MPI is faster than the OMP=4 by a factor of about 2.
As to the memory usage, a larger OpenMP threads number
always wins. In most cases, the pure MPI is a good choice
if we have a large enough memory.

For comparison between GPU code and CPU code, a
common problem size in real physics simulation, 1.6 million
particles and 64 × 64 × 64 grid points, is selected. The total
loop time using a single Nvidia GeForce GTX 1060 GPU

0

20

40

60

80

100

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64

M
em

or
y 
(G
B)

Ti
m
e 
(s
)

Number of nodes

getRange lostBeam depositer

poissson solver Transp & Commum Pusher & kicker

output total loop Memory(GB)

//
Figure 6: The time consuming of PIC code using multi-node
at Cori knight Landing.

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64

Ti
m
e 
(s
)

Number of nodes

OMP=1 OMP=2 OMP=4

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16 32 64

M
em

or
y(
G
B)

Number of nodes

OMP=1 OMP=2 OMP=4

Figure 7: a) total time and b) memory usage of different
parallel configuration.

card is 3.56 seconds. It is comparable with the CPU code
running at around 4 or 8 nodes on Cori Knight Landing. In
other words, for our PIC code, the performance of using one
GPU card is comparable with that using 256 to 512 Knight
Landing CPU cores.

CONCLUSIONS
A multi-particle beam dynamics simulation code using

PIC method was implemented on GPU using the CUDA
library. The GPU code structure and parallel strategy about
how to avoid race condition were discussed. We achieved a
maximum speedup of more than 50 using a common home-
use GPU. The PIC code also shows good scalability on a
GPU cluster Titan. We also ported this code and explored
the performance optimization on Cori Knight Landing. In
the future study, we will continue to extend this code and to
enhance the efficiency. We would also like to compare PIC
model with the gridless symplectic models on GPUs in our
future work.

ACKNOWLEDGMENTS
One of the author, Zhicong Liu, would like to extend

his thanks for the financial support from China Scholarship
Council (CSC, File No. 201604910876). We have used com-
puting resources at the Oak Ridge Leadership Computing
Facility (OLCF) and National Energy Research Scientific
Computing Center(NERSC).

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK043

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques

THPAK043
3311

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



REFERENCES
[1] C. K. Birdsall, “Particle-in-cell charged-particle simulations,

plus monte carlo collisions with neutral atoms, pic-mcc,”
IEEE Transactions on Plasma Science, vol. 19, pp. 65–85,
Apr 1991.

[2] A. Friedman, D. P. Grote, and I. Haber, “Three-dimensional
particle simulation of heavy-ion fusion beams,” Physics of
Fluids B: Plasma Physics, vol. 4, no. 7, pp. 2203–2210, 1992.

[3] J. Qiang, R. D. Ryne, S. Habib, and V. Decyk, “An object-
oriented parallel particle-in-cell code for beam dynamics
simulation in linear accelerators,” Journal of Computational
Physics, vol. 163, no. 2, pp. 434 – 451, 2000.

[4] J. Qiang, M. A. Furman, and R. D. Ryne, “A parallel particle-
in-cell model for beam–beam interaction in high energy ring
colliders,” Journal of Computational Physics, vol. 198, no. 1,
pp. 278–294, 2004.

[5] J. Amundson, P. Spentzouris, J. Qiang, and R. Ryne, “Syn-
ergia: An accelerator modeling tool with 3-d space charge,”
Journal of Computational Physics, vol. 211, no. 1, pp. 229 –
248, 2006.

[6] D. Uriot and N. Pichoff, “Tracewin,” CEA Saclay, June, 2014.

[7] Y. K. Batygin, “Particle-in-cell code beampath for beam dy-
namics simulations in linear accelerators and beamlines,” Nu-
clear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 539, no. 3, pp. 455–489, 2005.

[8] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, “Gpu computing,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 879–899, 2008.

[9] C. Nvidia, “Programming guide,” 2010.

[10] G. Stantchev, W. Dorland, and N. Gumerov, “Fast parallel
particle-to-grid interpolation for plasma pic simulations on
the gpu,” Journal of Parallel and Distributed Computing,
vol. 68, no. 10, pp. 1339–1349, 2008.

[11] H. Burau, R. Widera, W. Honig, G. Juckeland, A. Debus,
T. Kluge, U. Schramm, T. E. Cowan, R. Sauerbrey, and
M. Bussmann, “Picongpu: A fully relativistic particle-in-
cell code for a gpu cluster,” IEEE Transactions on Plasma
Science, vol. 38, no. 10, pp. 2831–2839, 2010.

[12] V. K. Decyk and T. V. Singh, “Particle-in-cell algorithms for
emerging computer architectures,” Computer Physics Com-
munications, vol. 185, no. 3, pp. 708–719, 2014.

[13] X. Pang and L. Rybarcyk, “Gpu accelerated online multi-
particle beam dynamics simulator for ion linear particle ac-
celerators,” Computer Physics Communications, vol. 185,
no. 3, pp. 744–753, 2014.

[14] C. Nvidia, “Cufft library,” 2010.

[15] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell,
“Reliability lessons learned from gpu experience with the titan
supercomputer at oak ridge leadership computing facility,” in
Proceedings of the international conference for high perfor-
mance computing, networking, storage and analysis, p. 38,
ACM, 2015.

[16] Y. He, B. Cook, J. Deslippe, B. Friesen, R. Gerber,
R. Hartman-Baker, A. Koniges, T. Kurth, S. Leak, W.-S.
Yang, et al., “Preparing nersc users for cori, a cray xc40
system with intel many integrated cores,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 1, 2018.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK043

THPAK043
3312

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques


