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Abstract
The Integrable Optics Test Accelerator (IOTA) is a novel

storage ring under commissioning at Fermi National Ac-
celerator Laboratory designed to investigate the dynamics
of beams with large transverse tune spread in the presence
of strongly nonlinear integrable optics [1, 2]. Nonlinear
multipole errors resulting from magnetic fringe fields can
impact the integrability of particle motion, and long-term
numerical tracking requires an accurate representation of
these effects. Surface fitting algorithms provide a robust
and reliable method for extracting this information from 3-
dimensional magnetic field data provided on a grid. These
algorithms are applied to investigate the unique nonlinear
magnetic insert of the IOTA ring, and consequences of the
fringe fields to the long-term dynamics of the beam are dis-
cussed.

INTRODUCTION
Integrable particle motion with large transverse tune

spread in IOTA will be achieved by introducing a 1.8 m
long insert with strongly nonlinear s−dependent transverse
magnetic field into a zero-dispersion section of the IOTA
ring [2]. This magnetic insert has been designed to within
tight tolerances [3], and must be properly matched to the
underlying linear lattice to ensure integrability. Tracking
studies for IOTA have primarily used simplified or idealized
models of the nonlinear insert. In this paper, we describe
a method for including the effects of realistic 3D magnetic
fringe fields.

Cylindrical Harmonics and Generalized Gradi-
ents

A general 3D magnetostatic field in a source-free region
may be expressed as ~B = ∇× ~A = −∇ψ, where the magnetic
scalar potential ψ is given in cylindrical coordinates in the
form:

ψ(ρ, φ, s) = −
∞∑
l=0

∞∑
m=0

(−1)l
m!

22ll!(l + m)!
ρ2l+m

×
[
C[2l]
m,s (s) sin(mφ) + C[2l]

m,c (s) cos(mφ)
]
. (1)

Here s denotes the longitudinal coordinate, and the functions
C[2l]
m,α (α = s, c), known as on-axis generalized gradients,

characterize the magnetic field completely with:

C[n]
m,α (s) =

dn

dsn
C[0]
m,α (s). (2)
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The representation (1) provides a concise Maxwellian de-
scription of the field, while the functions C[2l]

m,α may be used
to construct corresponding series of the form (1) for the mag-
netic vector potential, as required for symplectic tracking or
symplectic map analysis [4].

FIELD AND POTENTIALS OF THE IDEAL
NONLINEAR MAGNETIC INSERT

We first analyze the generalized gradients for the “ideal"
nonlinear insert, described at each longitudinal location s by
a 2D magnetic field ~B = Bx x̂+By ŷ satisfying ∂xBx+∂yBy =

0 and ∂xBy − ∂yBx = 0. This field is most easily expressed
in terms of either a magnetic vector potential ~A = As ŝ or a
magnetic scalar potential ψ satisfying ~B = ∇⊥ × ~A = −∇⊥ψ
at each s, where the two potentials are given by the real and
imaginary parts of the function [5]:

F (z) =
(

t̃ z
√

1 − z2

)
arcsin(z), (3)

in terms of the dimensionless quantities:

F =
As + iψ

Bρ
, z =

x + iy

c
√
β(s)

, t̃ =
τc2

β(s)
. (4)

Here τ denotes a dimensionless nonlinear insert strength,
c [m1/2] characterizes the transverse scale of the nonlinear
insert, and β(s) denotes the horizontal=vertical betatron am-
plitude within the drift space that will contain the nonlinear
insert, which is given explicitly by:

β(s)
β∗
= 1 +

(
2s
L

)2
tan2 πµ0, for −

L
2
≤ s ≤

L
2
. (5)

In (5), L denotes the length of the nonlinear insert, 0 ≤ µ0 <
0.5 denotes the tune advance across the nonlinear insert, and
β∗ denotes the betatron amplitude at the midpoint of the
nonlinear insert, given in terms of the parameters L and µ0
by:

β∗ =
L
2

cot πµ0. (6)

Due to the s-dependence of the betatron amplitude β
appearing in (4-5), the “ideal" magnetic scalar potential
does not satisfy the 3D Laplace equation: ∇2ψ , ∇2

⊥ψ = 0.
To represent the fields in the form (1), we must assume that
the longitudinal derivatives in (1) are negligible, so that
C[2l]
m,α (s) = 0 for α = s, c and l ≥ 1. Comparing (1) with

the power series for (3) and equating terms of like degree,
we find that the generalized gradients describing the ideal
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Figure 1: The first four of the nonvanishing generalized
gradients (7) are shown for the ideal IOTA nonlinear insert
for the case µ0 = 0.3. In each case, the quantity Cideal

2n,s is
normalized by its value at the longitudinal midpoint.

nonlinear magnetic insert are given (in physical units) for
n ≥ 1 by:

Cideal
2n,s (s) = −τ

(
Bρ
c4n

)
22n−1n!(n − 1)!

(2n)!

(
c2

β(s)

)n+1

, (7)

with Cideal
m,s = 0 for odd m and Cideal

m,c = 0 for all m. Fig. 1
illustrates the first four of the quantities (7) evaluated for an
insert tune advance of µ0 = 0.3. Note that these quantities
drop discontinuously to zero at the endpoints s = ±L/2. The
quantities become more sharply peaked about the midpoint
of the magnet with increasing n. At each fixed s, the domain
of convergence of the series (1) is given by |z | < 1, where z
was defined in (4).

ANALYSIS OF 3D MAGNETIC FIELD
DATA USING SURFACE METHODS

Computation of Generalized Gradients
The physical magnetic insert consists of 18 segments of

length 6.5 cm separated by 3.5 cm gaps. Table 1 contains the
basic parameters to which the magnetic insert was designed
[6]. Using ANSYS, numerically-computed magnetic field
values were provided on the surface of a circular cylinder
(within the vacuum chamber) of radius 4.8 mm surrounding
the magnetic axis (32×1601 points over a single octant).
To mitigate difficulties associated with numerical noise, a
surface-fitting method [4] was used to extract generalized
gradients through order m = 8. Explicitly,

C[n]
m,α (s) =

in

2mm!

∫ ∞

−∞

kn+m−1

I ′m(kR)
B̃αρ (R,m, k)eiksdk, (8)

where

B̃s
ρ (R,m, k) =

1
2π2

∫ ∞

−∞

∫ 2π

0
e−iks sin(mφ)Bρ (R, φ, s)dφds,

with a corresponding expression for B̃c
ρ . It was necessary to

use a large cutoff in the frequency domain (kmax=4.2 mm−1,

Figure 2: The lowest-order nonvanishing generalized gra-
dient (7) is shown for the IOTA nonlinear insert prototype
(red), together with its ideal counterpart (7) (blue) and its
approximation by segments (black).

7001 samples) to resolve peaks in the magnetic field on the
surface of the cylinder near the pole faces associated with
transitions between segments.

Table 1: Nominal Design Parameters of the IOTA Nonlinear
Insert (NLI) Prototype

Parameter Symbol Value
Strength parameter τ 0.45
Transverse scale factor c 0.009 m1/2

Tune advance across NLI µ0 0.3
Length of NLI L 1.8 m
Beta at NLI midpoint β∗ 0.6538 m
Segment length ∆s 6.5 cm

Figure 2 illustrates the lowest-order nonvanishing gradi-
ent, together with its ideal counterpart from (7). The ideal
gradient has been scaled by a factor of f = 1.54 (segment
separation/segment length) to account for the fact that the
strength of the field in each segment has been increased to
produce the same integrated kick that would occur if the
segments were not separated by gaps.

Applying the Fringe Field Correction
The exact Hamiltonian within the nonlinear insert, using

longitudinal position s as the independent variable, is given
by:

H = −

√
1 −

2Pt

β0
+ P2

t − ( ~P − ~A⊥)2 − As −
1
β0

Pt, (9)

where the transverse momenta ~P are normalized by the de-
sign momentum p0 = mcβ0γ0, the longitudinal variables
are T = c∆t and Pt = −∆γ/(β0γ0), and ~A = ~A/Bρ. The
ideal (integrable) Hamiltonian within the nonlinear insert is
given by:

H ideal =
1
2

(P2
x + P2

y ) − Aideal
s (X,Y, s). (10)
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To include the effect of segments and gaps, we also consider

Hseg =
1
2

(P2
x + P2

y ) − χ(s)Aideal
s (X,Y, sm(s)), (11)

where χ(s) = f within each segment, and χ(s) = 0 else-
where. Here sm(s) denotes the longitudinal location at the
midpoint of that segment nearest to s. One may apply a
fringe field correction of degree N to the Hamiltonian (11)
by using instead the Hamiltonian

H f rg = Hseg + ∆HN, (12)

where ∆HN denotes the difference H − Hseg, expressed
through terms of degree N . This requires evaluating Taylor
series in X and Y for the vector potentials ~A and ~Aideal ,
whose coefficients are obtained directly from the on-axis
generalized gradients C[n]

m,α (α = s, c) [4]. In this study,
we investigate the effect of those correction terms contain-
ing C[0]

2,s (quadrupole errors) and C[0]
4,s (octupole errors) only.

Sextupole errors vanish due to symmetry.

TRACKING RESULTS
We initialize a 2.5 MeV proton beam at the entrance to the

nonlinear insert with a matched KV-type distribution of the
form f ∝ δ(H ideal−ε0), where ε0 = 4 mm-mrad. To isolate
the effect of the nonlinear insert fringe fields, the beam is
tracked without space charge in a toy benchmark lattice, in
which all elements external to the nonlinear magnetic insert
are replaced by a single linear isotropic focusing kick [1].
Symplectic tracking [7] is used within the nonlinear insert
with a large number of longitudinal steps (3840) to resolve
fringe field variation between segments. Fig. 3 shows the
evolution of the moments of the two invariants of motion
[1], taken among all particles in the beam. After an initial
redistribution of the invariants over the first 1,000 turns, the
beam settles into a quasi-steady-state, after which there is
little evidence of the slow secular growth associated with
chaotic diffusion. A small number of particles experience
net increases in amplitude as large as 10-20% (Fig. 4), which
occur before turn 1,000 with little visible change thereafter.

CONCLUSION
Symplectic tracking in the IOTA nonlinear magnetic in-

sert for typical proton beam parameters, with quadrupole
and octupole fringe field contributions added, indicates weak
impact on beam quality with no evidence of instability. This
study is made possible by the use of surface-fitting methods
for smoothing numerical noise present in the original 3D
finite-element magnetic field data. Future investigations will
explore the use of more sophisticated symplectic integrators
such as those described in [8] to correctly include contri-
butions to ~A⊥ due to terms containing C[n]

2,s and C[n]
4,s for

n , 0.
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