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Abstract
We demonstrate covariant beam-physics simulation

through multipole magnets using Hamiltonians relying on
canonical momentum. Space-charge interaction using the
Lienard–Wiechert potentials is also discussed. This method
is compared with conventional nonlinear Lie-operator track-
ing and the TraceWin software package.

THEORY
Simulating particle beams in accelerators typically in-

volves paraxial (small-angle) approximations limited to
cylindrical symmetry, or Lie-operator transformations ca-
pable of modeling nonlinear effects, but still inherently re-
lying on a series-expanded exponential about the origin in
position–momentum phase space. The former is often useful
in control-room software for real-time diagnostics; the latter
is typically much slower and reserved for design work or
other offline tasks requiring best-possible accuracy.
In either case, Hamiltonians for relativistic beams are

typically renormalized in terms of longitudinal momentum
[1] which can be problematic for cases such as longitudinal
tracking in the ultra-relativistic limit [2].
As an alternative, we construct an integrator based on

Jackson’s derivations for charged particles reacting to exter-
nal potentials [3], with complementary notes from Barut [4].
We begin with Jackson’s covariant expression for relativistic
Hamiltonians (Gaussian units, four-vectors summed over α)
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where Aα is the external electromagnetic potential; τ is the
proper time, which binds the dynamics to the rest frame of
a reference particle; and Pα is the canonical momentum,
which eliminates velocity from the Hamiltonian:

Pα = mVα +
q
c

Aα, (3)

wherein Vα is the four-velocity, constrained by VαVα = c2.
For multipole magnets, Aα only has a longitudinal compo-
nent, Az , which reduces Eqs. (2) to
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Then, using dτ → ∆t/γ (and noting that since Pz is constant,
these equations are position–momentum separable) we can
adopt the symplectic Euler method [5]:

dx
dτ
=

Px

m
→ xi+1 = xi +

∆t
γ

Px

m
,

and likewise for the remaining expressions in Eqs. (4). This
can be evaluated iteratively with fewer operations than the
Lie-operator method, whose Taylor-expanded exponential
requires recursive Poisson brackets [6], typically to fourth
or fifth order, for multipole-magnet tracking.
This outperforms Lie-operator tracking in terms of com-

putational speed by at least a factor of three for fully analytic
solutions – and upwards of a factor of ten when using trun-
cated Taylor series polynomials as an optimization method.
In the latter case, the Lie polynomials for x̄i+n and P̄i+n be-
come fully dense, whereas the covariant trajectories remain
sparse.
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Figure 1: Lorentz forces compared in transverse space
through an octupole magnet for (top) a covariant potential
and (bottom) a fifth-order Lie-operator transform; the dis-
crepancy about the origin is owing to Pz dependence in the
former. Both cases are consistent with an octupole’s beam
shaping. All units arbitrary.

H WITH n/2 DEPENDENCE
The Hamiltonians typically derived for multipolar mag-

netic potentials are linearly dependent on Az . Equation (1)
shows that this is not the case when using conjugate momen-
tum. We can then assert that the quadratic dependence of H
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(a) (b)

Figure 2: a) 1 TeV bunch through a 1100mm sextupole (n=3, undersized pole-tip aperture to emphasize transverse-space
reshaping); I = 20A, r0 = 1mm, B0 = 8T. b) 2GeV bunch; 600mm decapole (n=5), I = 20A, r0 = 20mm, B0 = 5T.

on Az will shift the usual radial-coordinate dependence on
number of dipoles Az ∝ rn to Az ∝ rn/2.
To verify this, we use a version of Wolski’s contour-

integral approach [2] where the B-field for a single pole
of a multipole magnet is only nonzero in the radial direction,
and is solenoid-like:

Br = C n
2
r

n
2 −1,∫ z

−z

∫ r0

0
Brdrdz =

πNIR2

cr2
0

, (5)

which can be used to solve for C n
2
. Evaluating over all

poles (i.e. introducing θ-dependence) and converting to the
customary Cartesian system yields
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where N is number of turns per magnet coil,R is the effective
coil radius (which we have introduced), and r0 is the pole-
tip aperture radius. Using Br = ∇ × Ā → Br =

1
r
∂Az

∂θ ,
integrating, and again converting to Cartesian coordinates,
we have
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n
2
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0

, (7)

where the non-canceling units are current per c, which is
consistent with energy in Gaussian units.
It is then trivial to check that the trajectories for dPx/dt

and dPy/dt by Eqs. (4) have the same leading-order depen-
dence on x and y as those found by the Lie-operator method.
For a more thorough check, we compare Lorentz forces,

using an octupole (n = 4) as a test case. Beginning with
vi = Ûxi = ∂H/∂pi in the nonrelativistic case:

F̄n =

(
∂

∂ p̄

[
p̄2

2m
+���κ · Az

] )
× B̄n

∝ pz(3xy2 − 2x3) x̂ + pz(−3yx2 + 2y3) ŷ, (8)
which matches the first-order Lie-operator result for Û̄p/m.

For the covariant case, Eq. (1) can be expanded
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Then, using Ûxi = ∂H
∂Pi

, the remaining non-canceling terms
are

Fn
2
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2
∝ (4Pz x + 6y2x − 2x3) x̂

+ (−4Pz y + −6x2y + 2y3) ŷ. (10)
Again, the x and y dependencies are proportional (see Fig. 1).
The required n/2 dependence for a covariant H is thus clari-
fied a consequence of shifting to canonical momentum.

BENCHMARKS
As a baseline, Eqs. (4) and (7) were tested against

TraceWin using identical initial distributions and zero beam
current. This relied on TraceWin’s gradient definition—
using a field-on-pole (B0) approximation—to equal that of
Wolski [2, 7], as well as Eq. (5). We note that neither refer-
ence includes the effective coil radius R, and that covariant
results were consistent with TraceWin for R ∼30 mm over a
wide range of magnet types (n) and energies (MeV through
TeV scale). Figure 2 illustrates two such cases.

NONLINEAR BEHAVIOR
A cursory analysis in terms of relativistic velocities helps

to clarify the Hamiltonian’s nonlinear dependence on Az .
To start, Eq. (9) can be reverted to velocity dependence via
Eq. (3), where we shift to the bunch frame:

H = mc2
(
β̄2 − | β̄ |

)
− 2e β̄γAz +

3e2γ2 A2
z

mc2 .

The quadratic Az term here is clearly dominant for low-
βz particles; for medium- to high-βz , a linear–quadratic
threshold is now defined as
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Figure 3: Sketch of net space-charge contributions following Eq. (14) for test particles on the edges (points marked in red)
of isotropic distributions: Gaussian (left), uniform with exponential fall-off (center), and hollowed (right), respectively. All
three assume a

〈
β̄
〉
biased center–outward. The arrows’ horizontal components cancel when summing bins, leaving the

rightmost distirbution as the most δ-like distribution.

Az =
2
3
β̄mc2

γq
=
β̄

γ
· 625.3 MV, (11)

where the maximum β̄/γ ≈ 1/2 occurs for 400MeV protons.
By Eqs. (5) and (7), at the magnetic pole-tip limit (r = r0),
we have

|Br | ∝
n|Az |

r0
, (12)

indicating (in Gaussian units) that this threshold falls in the
multi-GV per meter regime of interest to wakefield accelera-
tion [8, 9].

SPACE CHARGE

Equation (2) can be populated using the Lienard–Wiechert
potentials [3, 10]

A0(x̄, t) =
[

q
(1 − β̄ · n̄)R

]
r .t .

; Ā(x̄, t) =
[

q β̄
(1 − β̄ · n̄)R

]
r .t .

,

(13)
where R = |R̄| = | x̄ − r(τ0)| = x0 − r0(τ0) is source to test-
particle distance defined by the light-cone condition; n̄ is
the unit vector in the same direction; and all quantities are
taken at the retarded time.
The dependence on

β̄

1 − β̄ · n̄
, (14)

cannot be overstated: velocity dependent space-charge con-
tributions are maximized for parallel velocities, and atten-
uated for antiparallel velocities. Figure 3 illustrates this
concept qualitatively, suggesting that a hollowed distribu-
tion represents a lowest-energy configuration for a charged-
particle bunch.
We now have a toolset capable of studying more com-

plicated cases, such as an alternating-current 4n-poles (oc-
tupoles and similar), which were shown in a previous work to
effectively freeze individual particles transverse motion be-
yond a certain radius while inducing a circulatory trajectory
with small longitudinal boost in the positive z direction [11].

Starting with the full expression for Az in polar coordi-
nates (see [2], Eq. [1.145]).

Az = |C n
2
|r

n
2 ei

n
2 θ ẑ,

then, for alternating current in an octupole (n = 4), θ effec-
tively fluctuates as ±π/n. Thus, solving the force in terms
of Eqs. (10) (first line) the only nonzero contribution is

Fr = −C2
n
2
r3 cos2(2θ) r̂ . (15)

We can expect this force to cause a shift in velocity such that

βr → βr

(
1 +

Fr∆t
m

)
. (16)

Thus despite space charge having predominantly being
parallel-β̄, it now has an artificial antiparallel restraint in
r̂. Using this shifted beta in Eq. (13), and assuming that
Fr∆t/m � −1, we have for space charge

Ar ∝
−qβrFr

(1 + βr n̄)R
r̂, (17)

which, again using Eq. (10) with R ≡
√
(r − rs)2 + (z − zs)2

(s subscript denotes source particle) yields a force offset to
the usual drift-space result:

F̄of f set =
q2C2

n
2
β2
rr6 cos4(2θ)

(1 + βr n̄)2R3 ẑ

−

4q2(z − zs)C2
n
2
β2
rr6 sin(4θ) cos2(2θ)

(1 + βr n̄)2R
θ̂, (18)

where the θ̂ component accounts for the circulatory motion,
and the ẑ component is solely positive, accounting for the
forward bias.

CONCLUSION
Manifestly covariant Hamiltonians are demonstrated to

be a viable alternative to conventional non-linear tracking
algorithms. With multipole magnetic potentials, particle tra-
jectories can be calculated with fewer operations, and space-
charge potentials are easily incorporated. Having avoided
approximations in H allows for the study of longitudinal
effects.
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