BEAM DYNAMICS WITH COVARIANT HAMILTONIANS

B. Folsom ${ }^{* 1}$, E. Laface ${ }^{1}$, European Spallation Source ERIC, Lund, Sweden
${ }^{1}$ also at Lund University, Particle Physics Division, Lund, Sweden

Abstract

We demonstrate covariant beam-physics simulation through multipole magnets using Hamiltonians relying on canonical momentum. Space-charge interaction using the Lienard-Wiechert potentials is also discussed. This method is compared with conventional nonlinear Lie-operator tracking and the TraceWin software package.

THEORY

Simulating particle beams in accelerators typically involves paraxial (small-angle) approximations limited to cylindrical symmetry, or Lie-operator transformations capable of modeling nonlinear effects, but still inherently relying on a series-expanded exponential about the origin in position-momentum phase space. The former is often useful in control-room software for real-time diagnostics; the latter is typically much slower and reserved for design work or other offline tasks requiring best-possible accuracy.

In either case, Hamiltonians for relativistic beams are typically renormalized in terms of longitudinal momentum [1] which can be problematic for cases such as longitudinal tracking in the ultra-relativistic limit [2].

As an alternative, we construct an integrator based on Jackson's derivations for charged particles reacting to external potentials [3], with complementary notes from Barut [4]. We begin with Jackson's covariant expression for relativistic Hamiltonians (Gaussian units, four-vectors summed over α)

$$
\begin{align*}
H & =\frac{1}{m}\left(P_{\alpha}-\frac{q}{c} A_{\alpha}\right)\left(P^{\alpha}-\frac{q}{c} A^{\alpha}\right) \tag{1}\\
& -c \sqrt{\left(P_{\alpha}-\frac{q}{c} A_{\alpha}\right)\left(P^{\alpha}-\frac{q}{c} A^{\alpha}\right)}
\end{align*}
$$

with the resulting equations of motion

$$
\begin{align*}
\frac{d x^{\alpha}}{d \tau} & =\frac{\partial H}{\partial P_{\alpha}}=\frac{1}{m}\left(P^{\alpha}-\frac{q}{c} A^{\alpha}\right), \tag{2}\\
\frac{d P^{\alpha}}{d \tau} & =-\frac{\partial H}{\partial x_{\alpha}}=\frac{q}{m c}\left(P^{\beta}-\frac{q}{c} A^{\alpha}\right) \partial^{\alpha} A^{\beta},
\end{align*}
$$

$$
\begin{align*}
& \frac{d x}{d \tau}=\frac{P_{x}}{m} \quad \frac{d y}{d \tau}=\frac{P_{y}}{m} \quad \frac{d z}{d \tau}=\frac{1}{m}\left(P_{z}-\frac{q}{c} A_{z}\right), \\
& \frac{P_{x}}{d \tau}=\frac{q}{m c}\left(P_{z}-\frac{q}{c} A_{z}\right) \frac{\partial A_{z}}{\partial x}, \\
& \frac{P_{y}}{d \tau}=\frac{q}{m c}\left(P_{z}-\frac{q}{c} A_{z}\right) \frac{\partial A_{z}}{\partial y} \quad \frac{P_{z}}{d \tau}=0 . \tag{4}
\end{align*}
$$

Then, using $d \tau \rightarrow \Delta t / \gamma$ (and noting that since P_{z} is constant, these equations are position-momentum separable) we can adopt the symplectic Euler method [5]:

$$
\frac{d x}{d \tau}=\frac{P_{x}}{m} \quad \rightarrow \quad x_{i+1}=x_{i}+\frac{\Delta t}{\gamma} \frac{P_{x}}{m}
$$

and likewise for the remaining expressions in Eqs. (4). This can be evaluated iteratively with fewer operations than the Lie-operator method, whose Taylor-expanded exponential requires recursive Poisson brackets [6], typically to fourth or fifth order, for multipole-magnet tracking.

This outperforms Lie-operator tracking in terms of computational speed by at least a factor of three for fully analytic solutions - and upwards of a factor of ten when using truncated Taylor series polynomials as an optimization method. In the latter case, the Lie polynomials for \bar{x}_{i+n} and \bar{P}_{i+n} become fully dense, whereas the covariant trajectories remain sparse.

Figure 1: Lorentz forces compared in transverse space through an octupole magnet for (top) a covariant potential and (bottom) a fifth-order Lie-operator transform; the discrepancy about the origin is owing to P_{z} dependence in the former. Both cases are consistent with an octupole's beam shaping. All units arbitrary.

H WITH $n / 2$ DEPENDENCE

The Hamiltonians typically derived for multipolar magnetic potentials are linearly dependent on A_{z}. Equation (1) shows that this is not the case when using conjugate momentum. We can then assert that the quadratic dependence of H

(a)

(b)

Figure 2: a) 1 TeV bunch through a 1100 mm sextupole ($\mathrm{n}=3$, undersized pole-tip aperture to emphasize transverse-space reshaping); $I=20 \mathrm{~A}, r_{0}=1 \mathrm{~mm}, B_{0}=8 \mathrm{~T}$. b) 2 GeV bunch; 600 mm decapole ($\mathrm{n}=5$), $I=20 \mathrm{~A}, r_{0}=20 \mathrm{~mm}, B_{0}=5 \mathrm{~T}$.
on A_{z} will shift the usual radial-coordinate dependence on number of dipoles $A_{z} \propto r^{n}$ to $A_{z} \propto r^{n / 2}$

To verify this, we use a version of Wolski's contourintegral approach [2] where the B-field for a single pole of a multipole magnet is only nonzero in the radial direction, and is solenoid-like:

$$
\begin{gather*}
B_{r}=C_{\frac{n}{2}} r^{\frac{n}{2}-1} \\
\int_{-z}^{z} \int_{0}^{r_{0}} B_{r} d r d z=\frac{\pi N I \mathcal{R}^{2}}{c r_{0}^{2}} \tag{5}
\end{gather*}
$$

which can be used to solve for $C_{\frac{n}{2}}$. Evaluating over all poles (i.e. introducing θ-dependence) and converting to the customary Cartesian system yields

$$
\begin{equation*}
B_{y}+i B_{x}=\frac{n \pi N I R^{2}(x+i y)^{\frac{n}{2}-1}}{2 c r_{0}^{\frac{n}{2}+2}}, \tag{6}
\end{equation*}
$$

where N is number of turns per magnet coil, \mathcal{R} is the effective coil radius (which we have introduced), and r_{0} is the poletip aperture radius. Using $B_{r}=\nabla \times \bar{A} \rightarrow B_{r}=\frac{1}{r} \frac{\partial A_{z}}{\partial \theta}$, integrating, and again converting to Cartesian coordinates, we have

$$
\begin{equation*}
A_{z}=\frac{\pi^{2} I N \mathcal{R}^{2}(x+i y)^{\frac{n}{2}}}{c r_{0}^{\frac{n}{2}+2}} \tag{7}
\end{equation*}
$$

where the non-canceling units are current per c, which is consistent with energy in Gaussian units.

It is then trivial to check that the trajectories for $d P_{x} / d t$ and $d P_{y} / d t$ by Eqs. (4) have the same leading-order depeny dence on x and y as those found by the Lie-operator method

For a more thorough check, we compare Lorentz forces, using an octupole $(n=4)$ as a test case. Beginning with $v_{i}=\dot{x}_{i}=\partial H / \partial p_{i}$ in the nonrelativistic case:

$$
\begin{align*}
\bar{F}_{n} & =\left(\frac{\partial}{\partial \bar{p}}\left[\frac{\bar{p}^{2}}{2 m}+\underline{k} \cdot A_{z}\right]\right) \times \bar{B}_{n} \\
& \propto p_{z}\left(3 x y^{2}-2 x^{3}\right) \hat{x}+p_{z}\left(-3 y x^{2}+2 y^{3}\right) \hat{y} \tag{8}
\end{align*}
$$

which matches the first-order Lie-operator result for $\dot{\bar{p}} / m$.

For the covariant case, Eq. (1) can be expanded

$$
\begin{equation*}
H=\left(\bar{P}^{2}-\frac{2 q A_{z} \bar{P}}{c}+\frac{e^{2} A_{z}^{2}}{c}\right) \frac{1}{m}-c\left|\bar{P}-\frac{e}{c} A_{z}\right| . \tag{9}
\end{equation*}
$$

Then, using $\dot{x}_{i}=\frac{\partial H}{\partial P_{i}}$, the remaining non-canceling terms are

$$
\begin{align*}
F_{\frac{n}{2}} & =\left(\frac{2 \bar{P}}{m}-\frac{e \beta_{z} A_{z}}{m c}\right) \times \bar{B}_{\frac{n}{2}} \propto\left(4 P_{z} x+6 y^{2} x-2 x^{3}\right) \hat{x} \\
& +\left(-4 P_{z} y+-6 x^{2} y+2 y^{3}\right) \hat{y} \tag{10}
\end{align*}
$$

Again, the x and y dependencies are proportional (see Fig. 1). The required $n / 2$ dependence for a covariant H is thus clarified a consequence of shifting to canonical momentum.

BENCHMARKS

As a baseline, Eqs. (4) and (7) were tested against TraceWin using identical initial distributions and zero beam current. This relied on TraceWin's gradient definitionusing a field-on-pole (B_{0}) approximation-to equal that of Wolski [2, 7], as well as Eq. (5). We note that neither reference includes the effective coil radius \mathcal{R}, and that covariant results were consistent with TraceWin for $\mathcal{R} \sim 30 \mathrm{~mm}$ over a wide range of magnet types (n) and energies (MeV through TeV scale). Figure 2 illustrates two such cases.

NONLINEAR BEHAVIOR

A cursory analysis in terms of relativistic velocities helps to clarify the Hamiltonian's nonlinear dependence on A_{z}. To start, Eq. (9) can be reverted to velocity dependence via Eq. (3), where we shift to the bunch frame:

$$
H=m c^{2}\left(\bar{\beta}^{2}-|\bar{\beta}|\right)-2 e \bar{\beta} \gamma A_{z}+\frac{3 e^{2} \gamma^{2} A_{z}^{2}}{m c^{2}} .
$$

The quadratic A_{z} term here is clearly dominant for lowβ_{z} particles; for medium- to high- β_{z}, a linear-quadratic threshold is now defined as

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques

Figure 3: Sketch of net space-charge contributions following Eq. (14) for test particles on the edges (points marked in red) of isotropic distributions: Gaussian (left), uniform with exponential fall-off (center), and hollowed (right), respectively. All three assume a $\langle\bar{\beta}\rangle$ biased center-outward. The arrows' horizontal components cancel when summing bins, leaving the rightmost distirbution as the most δ-like distribution.

$$
\begin{equation*}
A_{z}=\frac{2}{3} \frac{\bar{\beta} m c^{2}}{\gamma q}=\frac{\bar{\beta}}{\gamma} \cdot 625.3 \mathrm{MV} \tag{11}
\end{equation*}
$$

where the maximum $\bar{\beta} / \gamma \approx 1 / 2$ occurs for 400 MeV protons. By Eqs. (5) and (7), at the magnetic pole-tip limit ($r=r_{0}$), we have

$$
\begin{equation*}
\left|B_{r}\right| \propto \frac{n\left|A_{z}\right|}{r_{0}} \tag{12}
\end{equation*}
$$

indicating (in Gaussian units) that this threshold falls in the multi-GV per meter regime of interest to wakefield acceleration $[8,9]$.

SPACE CHARGE

Equation (2) can be populated using the Lienard-Wiechert potentials [3, 10]
$A_{0}(\bar{x}, t)=\left[\frac{q}{(1-\bar{\beta} \cdot \bar{n}) R}\right]_{\text {r.t. }} ; \quad \bar{A}(\bar{x}, t)=\left[\frac{q \bar{\beta}}{(1-\bar{\beta} \cdot \bar{n}) R}\right]_{\text {r.t. }}$,
where $R=|\bar{R}|=\left|\bar{x}-r\left(\tau_{0}\right)\right|=x_{0}-r_{0}\left(\tau_{0}\right)$ is source to testparticle distance defined by the light-cone condition; \bar{n} is the unit vector in the same direction; and all quantities are taken at the retarded time.

The dependence on

$$
\begin{equation*}
\frac{\bar{\beta}}{1-\bar{\beta} \cdot \bar{n}}, \tag{14}
\end{equation*}
$$

cannot be overstated: velocity dependent space-charge contributions are maximized for parallel velocities, and attenuated for antiparallel velocities. Figure 3 illustrates this concept qualitatively, suggesting that a hollowed distribution represents a lowest-energy configuration for a chargedparticle bunch.

We now have a toolset capable of studying more complicated cases, such as an alternating-current 4 n -poles (octupoles and similar), which were shown in a previous work to effectively freeze individual particles transverse motion beyond a certain radius while inducing a circulatory trajectory with small longitudinal boost in the positive z direction [11].

Starting with the full expression for A_{z} in polar coordinates (see [2], Eq. [1.145]).

$$
A_{z}=\left|C_{\frac{n}{2}}\right| r^{\frac{n}{2}} e^{i \frac{n}{2} \theta} \hat{z}
$$

then, for alternating current in an octupole $(n=4), \theta$ effectively fluctuates as $\pm \pi / n$. Thus, solving the force in terms of Eqs. (10) (first line) the only nonzero contribution is

$$
\begin{equation*}
F_{r}=-C_{\frac{n}{2}}^{2} r^{3} \cos ^{2}(2 \theta) \hat{r} \tag{15}
\end{equation*}
$$

We can expect this force to cause a shift in velocity such that

$$
\begin{equation*}
\beta_{r} \rightarrow \beta_{r}\left(1+\frac{F_{r} \Delta t}{m}\right) \tag{16}
\end{equation*}
$$

Thus despite space charge having predominantly being parallel $-\bar{\beta}$, it now has an artificial antiparallel restraint in \hat{r}. Using this shifted beta in Eq. (13), and assuming that $F_{r} \Delta t / m \ll-1$, we have for space charge

$$
\begin{equation*}
A_{r} \propto \frac{-q \beta_{r} F_{r}}{\left(1+\beta_{r} \bar{n}\right) R} \hat{r} \tag{13}
\end{equation*}
$$

which, again using Eq. (10) with $R \equiv \sqrt{\left(r-r_{s}\right)^{2}+\left(z-z_{s}\right)^{2}}$ (s subscript denotes source particle) yields a force offset to the usual drift-space result:

$$
\begin{align*}
\bar{F}_{\text {offset }} & =\frac{q^{2} C_{\frac{n}{2}}^{2} \beta_{r}^{2} r^{6} \cos ^{4}(2 \theta)}{\left(1+\beta_{r} \bar{n}\right)^{2} R^{3}} \hat{z} \\
& -\frac{4 q^{2}\left(z-z_{s}\right) C_{\frac{n}{2}}^{2} \beta_{r}^{2} r^{6} \sin (4 \theta) \cos ^{2}(2 \theta)}{\left(1+\beta_{r} \bar{n}\right)^{2} R} \hat{\theta} \tag{18}
\end{align*}
$$

where the $\hat{\theta}$ component accounts for the circulatory motion, and the \hat{z} component is solely positive, accounting for the forward bias.

CONCLUSION

Manifestly covariant Hamiltonians are demonstrated to be a viable alternative to conventional non-linear tracking algorithms. With multipole magnetic potentials, particle trajectories can be calculated with fewer operations, and spacecharge potentials are easily incorporated. Having avoided approximations in H allows for the study of longitudinal effects.

11] Alex J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. College Park, MD, USA: University of Maryland, Forthcoming, 2018, pp. 16311632. http : / /www . physics . umd. edu / dsat/docs / Book12Mar2018.pdf
[2] Andrzej Wolski. Beam Dynamics: In High Energy Particle Accelerators. London, UK: Imperial College Press, 2014, pp. 22-24, 75.
[3] John David Jackson. Classical Electrodynamics. New York, NY, USA: John Wiley \& Sons Inc., 1999, pp. 579-585, 661663.
[4] Asim Orhan Barut. Electrodynamics and classical theory of fields \& particles. Mineola, NY, USA: Dover, 2010; reprint, New York: MacMillan, 1964, pp. 68-72.
[5] Paul J Channell and Filippo R Neri. "An introduction to symplectic integrators". In: Fields Institute Communications 10 (1996), pp. 45-58.
[6] Benjamin Folsom and Emanuele Laface. "Fast Tracking of Nonlinear Dynamics in the ESS Linac Simulator via Particle-

Count Invariance". In: 7th International Particle Accelerator Conference (IPAC'16), Busan, Korea, May 8-13, 2016. JACOW, Geneva, Switzerland. 2016, pp. 3080-3082.
[7] D Uriot and N Pichoff. TraceWin. Saclay, France: CEA Saclay, 2014, p. 150. http://irfu.cea.fr/dacm/en/ logiciels/
[8] Ian Blumenfeld et al. "Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator". In: Nature 445.7129 (2007), p. 741.
[9] Wei Lu et al. "Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime". In: Physical Review Special Topics-Accelerators and Beams 10.6 (2007), p. 061301.
[10] Richard Phillips Feynman, Robert B Leighton, and Matthew Sands. The Feynman lectures on physics, vol. 2: Mainly electromagnetism and matter. Reading, MA, USA: AddisonWesley, 1979, pp. 14-4, 25-5.
[11] Benjamin Folsom and Emanuele Laface. "Beam shaping with 4n-order multipole magnets". In: Journal of Physics: Conference Series. Vol. 874. 1. IOP Publishing. 2017, p. 012071.

