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Abstract
The Nb3Sn dipole design for the hadron machine option

of the Future Circular Colliders enters in an intense and long

R&D phase. As a result, more realistic dipole field quality

evaluations are available for beam dynamics studies. This

paper discusses the impact of the main dipole field quality

on the first and second order design of the hadron machine

and on its dynamic aperture.

MAIN DIPOLE FIELD QUALITY
For each harmonic bn (an), the field error can be written

as the sum of three components, as in the LHC [1]:

bn = bnS +
ξU
1.5

bnU + ξRbnR

where ξU and ξR denote the random numbers with Gaussian

distribution truncated at 1.5 and 3σ, respectively. Each of

the three components is the sum of three effects: geometric,

persistent and ramp induced errors. The systematic values

S are determined with ROXIE [2] for a given design. The

random component is determined by Monte-Carlo simula-

tions considering a random displacement with root-mean

square amplitude of 50 μm, equally shared by the magnet

sub-element degrees of freedom. The field quality tables are

given for the cos-theta design option, which is the baseline

option [3–5]. The values of the uncertainty U are set equal

to the random values. At this stage a uniform production

is assumed. At a later stage the uncertainty values may be

different for each manufacturer. The field quality at injec-

tion (3.3 TeV) is dominated mainly by the persistent current

effects. These are proportional to the critical current density

and the effective filament size. Two values for the variation

of the critical current density are considered (±10% and

±5%) which impact the random part components of table

v2 and v3, as defined in Ref. [3]. Also, two different effec-

tive filament sizes (50 μm and 20 μm) are considered, which

produce the slightly different values for the multipoles of or-

der higher than 3 at injection (respectively table v2 and v3),

while no difference is expected at collision. The two dipole

field quality tables show a systematic b2 value of ± 50 units

at collision due to saturation from the iron. Its impact on the

arc optics is shown and discussed in Ref. [6].

b3 CORRECTORS AND ALIGNMENT
Early dynamic aperture simulations have shown that the

local correction of the systematic b3 error of the main dipole

is mandatory at collision for FCC-hh [7]. With the current

systematic value of b3 (about 60 units), its correction is
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also required at injection energy. One spool-piece corrector

(MCS) is placed at each dipole of the arc. Its length is

0.11 m (as in LHC) and the strength of 3000 T/m2 is required

to cancel about 4 units of b3 at collision and 60 units at

injection. The 60 units of systematic b3 at injection are also

a concern for their impact on beta-beating in presence of

MCS misalignment. The rms value of the beta-beating due

to a random b2 of the main dipoles can be computed as:

(
Δβ

β

)
rms

=

√
Nmb

2
√

2 sin(2πQ)

√
1

Nmb

∑
β2
α

Rref
σb2
, (1)

where Q is the tune in the plane considered, Nmb is the

number of dipoles, α is the dipole angle and Rref is the

reference radius of harmonics components [1]. At injection,

the residual beta-beating due to the random component of b2

of the main FCC dipoles is about 5%. There is an additional

contribution to the beta-beating, coming from feed-down of

b3 to b2, in presence of dipole and MCS misalignments. The

σfeed−down
b2

can be computed using the following formulas:

bfeed−downmb

2
=

2

Rref
b3(xmb − xco)

=
2

Rref
(〈b3〉 + σb3

)(〈xmb〉
+σmb − 〈xco〉 − σco)

for the misalignment of the dipoles, and

bfeed−downsp
2

= − 2

Rref
b3(xsp − xco)

= − 2

Rref

[
〈b3〉(〈xmb〉 + σmb + 〈xsp〉 + σsp −

〈xco〉 − σco − 〈xcosp−mb 〉 − σcosp−mb )
]

for the misalignment of the MCS, where xmb is the alignment

of the magnetic axis of the dipole. In LHC its systematic

value 〈xmb〉 is ±0.1 mm, and its standard deviation σmb is

±0.5 mm. We consider 〈xco〉 = 〈xcosp−mb 〉 = 0 and we have

σco ∼ 0.4 mm at injection. The axis of the MCS is supposed

perfectly aligned to the dipole (i.e. 〈xsp〉 = 0) while σsp is

the random misalignment of the spool piece relative to the

dipole. The contribution due to the small orbit difference

between the dipole and its attached spool piece is considered

to be random and uncorrelated, σcosp−mb = 0.06 mm [8].

Adding also a systematic error Δ in the spool piece setting,
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we get a total b2 from feed-down of:

bfeed−down
2 = − 2

Rref

[
Δ〈b3〉(〈xmb〉 + σmb − σco) +

(1 + Δ)〈b3〉(σcosp−mb − σsp) −
σb3

(〈xmb〉 + σmb − σco)
]

The standard deviation of the feed-down component is

then [1]:

σfeed−down
b2

=
2

Rref

[
Δ2〈b3〉2(σ2

mb + σ
2
co) +

(1 + Δ)2〈b3〉2(σ2
sp + σ

2
cosp−mb ) +

σ2
b3
(σ2

mb + σ
2
co + 〈xmb〉2)

]1/2
. (2)

At injection, for FCC-hh, we have 〈b3〉 = −60·10−4, σb3
=

4·10−4, and using σsp equal to ±0.5 mm gives σfeed−down
b2

=

3.6·10−4. Inserting this value in Eq. 1 results in ∼22% rms

beta-beating, which is much higher than the beta-beating

coming from the dipoles random b2 component.

Fixing the maximumσfeed−down
b2

to be ≤ σb2
, and inverting

Eq. 2 for σsp gives:

σ2
sp =

[
R2

ref
σfeed−down2

b2

4(1 + Δ)2〈b3〉2
−

Δ2〈b3〉2(σ2
mb
+ σ2

co) + (1 + Δ)2〈b3〉2σ2
cosp ·mb

(1 + Δ)2〈b3〉2
+

σ2
b3
(σ2

co + 〈xmb〉2 + σ2
mb

)
(1 + Δ)2〈b3〉2

]1/2
.

The random relative alignment of the MCS with respect to

the dipoleas a function of the systematic b3 value, is shown

in Fig. 1. The relative MCS alignment should be between

∼ 0.070 and ∼0.1 mm for a systematic b3 value of about

60 · 10−4. Keeping the LHC value for the MCS alignment

(± 0.5 mm, 1 σ) requires a systematic value of b3 between

∼13 and ∼14.3 ·10−4.

DYNAMIC APERTURE
The dynamic aperture (DA) is computed using Six-

Track [9], for the same initial conditions and parameters

described in [7, 10]. At collision, since the systematic com-

ponent of b3 is corrected, the main source of DA reduction

is the random b3 component, as shown in Fig. 2. In fact,

when the field errors b3 only are considered in main dipoles,

the minimum DA is above 25 σ. It reduces to 20 σ when

all other multipoles are included. It is worth noting that

as shown in Fig. 2 the different seeds considered in the

simulation produce a very different values of DA between

20 σ (minimum) up to almost 70 σ (maximum). As will

be shown for the injection case, the mean value is highly

influenced by the maximum position value scanned in the

DA study. Therefore, in the following the minimum DA

only is quoted, which is also the worst case. For the CDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

σ s
p
 [

m
m

]

< b3 > 1.e-4 unit

no setting error
10% setting error

0.5 mm
0.1 mm

Figure 1: MCS random alignment to have σfeed−down
b2

=

0.9·10−4 as a function of the systematic b3 value at injection.
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Figure 2: 105 turns dynamic aperture for 5 directions φ =
arctan(√εy/εx) of the space and 60 seeds. FCC collision

optics without systematic b2 in the dipole and nominal tunes

110.31/108.32.

optics [6,11], with systematic b2 component of main dipoles

and with the difference in phase advances between IPA and

IPG (required to minimize the impact on DA due to the main

IR non-linearities [12], called in the following IPA-G col-

lision μ), the DA is greatly improved. A minimum value

above 50 σ is found due to main dipole errors only.

At injection, the DA is the result of the combination of

random dipole errors, as shown in Fig. 3. Contrary to the

collision case, the DA significantly changes when the ran-

dom b3 alone, or with the random b5 or when all multipoles

are considered. As for the collision case, there is a large

spread of DA values. Figure 4 shows the DA histogram of

the different seeds for each angle considered: no regular

shape can be identified. Table 1 summarizes the minimum

DA due to main dipole field quality, considering different

optics and including the triplet, separation dipole errors and

octupoles for Landau Damping [13,14]. The reduction of all

multipoles with order higher than 3 going from table v2 to

table v3 strongly increases DA for a fixed optics. The IPA-G

collision μ can also strongly change the DA. The minimum
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Figure 3: 105 turns dynamic aperture for 5 directions φ =
arctan(√εy/εx) of the space and 60 seeds. FCC injection

optics without systematic b2 in the dipole and with nominal

tunes 110.28/108.31. Dipole errors table v2.

Figure 4: Distribution of 105 turns dynamic aperture for 5

directions φ = arctan(√εy/εx) of the space and 60 seeds.

Data correspond to the green dot and error lines in Fig. 3.

DA due to the inner triplet and separation dipoles errors [12]

only is above 28 σ. When the main dipole errors are also

considered the minimum DA decreases: it remains above

the target value without the IPA-G collision μ while it goes

below the target with the IPA-G collision μ. Landau Damp-

ing Octupoles have a smaller impact on DA, increasing it

a bit. In summary, DA is above the target of 12 σ when

main dipole errors are considered only. Therefore, from

DA point of view a local correction of b4 and b5 systematic

dipole field errors are not needed. Interplay of main dipole

errors with other magnet errors around the ring can reduce

DA below the target value, according to the phase advance

between symmetric points in the ring. Therefore, an opti-

mal phase advance between IPA and IPG at injection has

to be found taking into account as many errors/non-linear

components as possible. In particular, linear imperfections,

normal and skew quadrupole errors of both main dipoles

Table 1: Minimum DA at injection. When specified triplet

and separation dipoles errors and octupoles are included.

15◦ 30◦ 45◦ 60◦ 75◦ comments
14.4 14.7 14.3 14.9 13.8 b2=0 units, table v2

33.3 31.1 39.2 29.4 30.2 b2=0 units, table v3

16.8 18.4 18.7 20.3 19.9 |b2|=50 units, table v3

17.9 15.3 15.9 15.6 16.3 |b2|=50 units, table v3,

triplet and separation

dipoles errors

34.1 36 37.2 37.1 37.5 |b2|=50 units, table v3,

IPA-G collision μ
5.2 5.2 5.6 3.7 3.8 |b2|=50 units, table v3,

IPA-G collision μ,
triplet and separation

dipoles errors

7.0 6.9 6.8 5.1 7.1 |b2|=50 units, table v3,

IPA-G collision μ,
triplet and separation

dipoles errors,

octupoles 15/720 A

and quadrupoles [15], as well as non-linear errors of main

quadrupoles, are not included in these simulations.

INJECTION ENERGY CHOICE
In the FCC-hh study, two possible injection energies are

considered: the baseline value at 3.3 TeV, using LHC or an

HEB as injector (to which all previous results refer) and an

alternative energy at 1.3 TeV, using a superconducting SPS as

injector [16]. The Dipole Field Quality table is evaluated for

the injection energy of 1.3 TeV, as well. The main difference

with respect to the 3.3 TeV table is that the Uncertainty and

Random components of the natural higher order harmonics

are much bigger in the 1.3 TeV table. The corresponding

minimum DA is about 2 σ and the maximum DA in the

horizontal plane is about 8 σ, independently of the optics or

the chosen IPA-G phase advance. Finally, it is worth noting

that in the 1.3 TeV case the maximum persistent current will

occur during the ramp of the magnets to higher field.

CONCLUSION AND PERSPECTIVES
Present tables of main dipole field quality alone ensure a

DA above 12 σ at the injection energy of 3.3 TeV and much

more at collision energy. Injection energy at 1.3 TeV is

presently excluded from DA point of view. Local correction

of systematic b4 and b5 is not required from DA point of

view. Instead, local correction of systematic b3 is mandatory,

LHC correctors with a maximum gradient of 3000 T/m2

allow to correct up to 4 units at collision and 60 units at the

injection energy of 3.3 TeV. Corrector misalignments may be

a concern at injection due to feed-down of systematic b3 to b2.

Finally, interplay of main dipole errors with other magnet

errors around the ring can reduce DA below the target value

at injection if phase advances between symmetric points in
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the ring are not properly tuned. Main quadrupoles errors, as

well as linear imperfections of main dipoles are planned to

be included in simulations.
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