WEPAG —  MC6 Poster Session   (02-May-18   09:00—12:00)
Paper Title Page
WEPAG002 Tunable Q-Factor Gas-Filled RF Cavity 2064
SUSPF092   use link to see paper's listing under its alternate paper code  
 
  • M.D. Balcazar, A. Moretti, A.V. Tollestrup, A.C. Watts, K. Yonehara, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings, A. Dudas, R.P. Johnson, G.M. Kazakevich, M.L. Neubauer
    Muons, Inc, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
Fermilab is the main institution to produce the most powerful and wide-spectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gas-filled RF cavity has been proposed. The goal of this measurement is to study a tunable Q-factor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, the measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAG003 Hadron Beam Monitor Design with Gas-Filled RF Resonators in Intense Neutrino Source 2067
 
  • M.D. Balcazar, K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
For the future Long Baseline Neutrino Facility at Fermilab, a new radiation-robust hadron beam profile monitor has been proposed consisting of an interface of gas-filled radiofrequency cavity detectors in the backward region of the LBNF decay pipe. A tailored monitor layout will be used along with the new RF instrumentation. Proposed designs for the detector configuration include a variety of radially symmetric arrangements of RF resonators located at the position of maximum gradient in the beam distribution across the monitor. Until the final detector cavities are available, a prototype tunable Q-factor RF cavity will provide functional emulation for studies of the monitor layout configurations presented here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAG004 Automating Orbit Correction in the Main Injector 8 GeV Line 2070
 
  • K.J. Hazelwood, I. Kourbanis, G.E. Krafczyk, M.-J. Yang
    Fermilab, Batavia, Illinois, USA
 
  The Main Injector 8 GeV line (MI8 line) transports beam from Fermilab's Booster accelerator to either the Booster Neutrino experiments (BNB), the Recycler or the Main Injector. Often the orbit of the beam through the MI8 line differs depending on the beam destination. The beam is collimated in the MI8 line, so increasing intensities and repetition rates make controlling orbits through the collimators a necessity. The current method of regulating the MI8 line orbit with DC corrector settings is insufficient. A system named MITUNE is being developed to sample and categorize all beams through the MI8 line and automatically calculate and apply proper dipole corrector ramps to maintain desired orbits for pulses to any destination.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAG005 Synchrotron Radiation Beam Diagnostics for the Integrable Optics Test Accelerator 2073
SUSPF100   use link to see paper's listing under its alternate paper code  
 
  • N. Kuklev, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • A.L. Romanov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the U.S. National Science Foundation under Award PHY-1535639. Fermi Research Alliance, LLC operates Fermilab under Contract DE-AC02-07CH11359 with the US Department of Energy.
The Integrable Optics Test Accelerator (IOTA) is a research electron and proton storage ring currently being commissioned at Fermilab's Accelerator Science and Technology (FAST) facility. An extensive beam physics research program is planned, including tests of novel techniques for improving beam intensity, stability, and emittance. A key part of IOTA beam diagnostics suite are synchrotron light beam monitors, mounted onto each dipole. In this paper, we present the hardware and software design of this system. Mechanical layout and actuator control electronics are described. High throughput image acquisition and analysis architecture is outlined, and its preliminary performance is explored. Integration of the system within accelerator control network and possible user applications, such as camera auto-focusing, are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)