MOZGBE —  MC7 Orals   (30-Apr-18   14:00—15:30)
Chair: F.C. Pilat, ORNL, Oak Ridge, Tennessee, USA
Paper Title Page
MOZGBE1 Development of Gas Stripper at RIBF 41
 
  • H. Imao
    RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
 
  Charge strip­pers are al­most in­evitable for ac­cel­er­a­tions in heavy-ion ac­cel­er­a­tor com­plex. The fixed solid strip-pers in­clud­ing car­bon-foil strip­pers are dif­fi­cult to be used in on-go­ing or up­com­ing new-gen­er­a­tion in-flight RI beam fa­cil­i­ties, e.g., RIBF (RIKEN, Japan), FAIR (GSI, Ger­many), FRIB (NSCL/MSU, US), HIAF (IMP, China) and RAON (RISP, Korea). The He gas strip­per de­vel­oped at RIBF is the first suc­cess­ful strip­per sig­nif­i­cantly be-yond the ap­plic­a­ble limit of the fixed car­bon-foil strip-pers. We dis­cuss the de­vel­op­ment of the gas strip­pers at RIBF and overview the re­lated new-gen­er­a­tion strip­pers being de­vel­oped in the world.  
slides icon Slides MOZGBE1 [11.797 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBE2
Multi-MW Targets for Next-Generation Accelerators  
 
  • R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Next-gen­er­a­tion ac­cel­er­a­tor fa­cil­i­ties will re­quire multi-MW tar­gets for pro­duc­ing their re­quired ex­per­i­men­tal par­ti­cles and beams. This talk will dis­cuss a va­ri­ety of crit­i­cal tar­get tech­nol­ogy chal­lenges re­sult­ing from these in­creas­ing power lev­els and de­scribe re­search & de­vel­op­ment into new ap­proaches to ad­dress these chal­lenges.  
slides icon Slides MOZGBE2 [11.705 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBE3 Primary Study of High-Power Graphene Beam Window 47
 
  • H. Wang, C. Meng, H. Qu, D.H. Zhu
    IHEP, Beijing, People's Republic of China
  • X. Sun, P.C. Wang
    DNSC, Dongguan, People's Republic of China
 
  Beam win­dows are usu­ally used to iso­late vac­uum or other spe­cial en­vi­ron­ments, which is a key de­vice for high-power ac­cel­er­a­tors. Graphene has ex­tremely high ther­mal con­duc­tiv­ity, high strength and high trans­parency to high en­ergy ions. It is highly suit­able for beam win­dows if the tech­nol­ogy is al­low­able. This paper will dis­cuss the pri­mary tests of graphene films, in­clud­ing vac­uum per-for­mance and ther­mal con­duc­tiv­ity per­for­mance, as well as the sim­u­lated per­for­mance of an as­sumed graphene win­dow.  
slides icon Slides MOZGBE3 [1.751 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBE4 Overview of Fabrication Techniques and Lessons Learned with Accelerator Vacuum Windows 51
 
  • C.R. Ader, M.W. McGee, L.E. Nobrega, E.A. Voirin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.
Vac­uum thin win­dows have been used in Fer­mi­lab's ac­cel­er­a­tors for decades and typ­i­cally have been over­looked in terms of their crit­i­cal­ity and fragility. Vac­uum win­dows allow beam to pass through while cre­at­ing a bound­ary be­tween vac­uum and air or high vac­uum and low vac­uum areas. The de­sign of vac­uum win­dows, in­clud­ing ti­ta­nium and beryl­lium win­dows, will be dis­cussed as well as fab­ri­ca­tion, test­ing, and op­er­a­tional con­cerns. Fail­ure of win­dows will be re­viewed as well as safety ap­proaches to mit­i­gat­ing fail­ures and ex­tend­ing the life­times of vac­uum win­dows. Var­i­ous meth­ods of cal­cu­lat­ing the strengths of vac­uum win­dows will be ex­plored, in­clud­ing FEA.
 
slides icon Slides MOZGBE4 [2.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBE5 Results on the FCC-hh Beam Screen at the KIT Electron Storage Ring KARA 55
 
  • L.A. Gonzalez, V. Baglin, P. Chiggiato, C. Garion, M. Gil Costa, R. Kersevan
    CERN, Geneva, Switzerland
  • I. Bellafont, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • S. Casalbuoni, E. Huttel
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: * The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
In the frame­work of the Eu­ro­Cir­Col col­lab­o­ra­tion* (work pack­age 4 "Cryo­genic Beam Vac­uum Sys­tem"), the fab­ri­ca­tion of 3 FCC-hh beam-screen (BS) pro­to­types has been car­ried out with the aim of test­ing them at room tem­per­a­ture at the Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT) 2.5 GeV elec­tron stor­age ring KARA (KArl­sruhe Re­search Ac­cel­er­a­tor). The 3 BS pro­to­types will be tested on a beam­line in­stalled by the col­lab­o­ra­tion, named as BEam Screen TEst­bench EX­per­i­ment (BESTEX). KARA has been cho­sen be­cause its syn­chro­tron ra­di­a­tion (SR) spec­trum, pho­ton flux and power, match the one fore­seen for the 50+50 TeV FCC-hh pro­ton col­lider. Each of the 3 BS pro­to­types, 2 m in length, im­ple­ment a dif­fer­ent de­sign fea­ture: 1) base­line de­sign (BD), with elec­tro-de­posited cop­per and no elec­tron-cloud (EC) mit­i­ga­tion fea­tures; 2) BD with set of dis­trib­uted cold-sprayed anti-EC clear­ing elec­trodes; 3) BD with laser-ab­lated anti-EC sur­face tex­tur­ing. We pre­sent here the re­sults ob­tained so far at BESTEX and the com­par­i­son with ex­ten­sive mon­te­carlo sim­u­la­tions of the ex­pected out­gassing be­hav­ior under syn­chro­tron ra­di­a­tion.
The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.
 
slides icon Slides MOZGBE5 [4.318 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE5  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)