
LATTICE OPTIMIZATION USING JUPYTER NOTEBOOK
ON HPC CLUSTERS*

H. Nishimura†, Y. Qin, C. Sun, S. James, K. Fernsler, K. Song, G. Jung
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract
Tracy accelerator simulation library [1] was originally

developed for the Advanced Light Source (ALS) design
studies [2] at LBNL in the late 1980’s. It was originally
written in Pascal [3], later ported to C++, and then to C#
[4]. It is still actively updated and currently used by the
ALS Upgrade Project (ALS-U) [5] to design and to opti-
mize the lattice. Recently, it has been reconstructed to
provide ease of use and flexibility by leveraging the
quickly growing Python language. This paper describes
our effort of porting it to Jupyter Notebook[6] on our
institutional High-Performance Computing (HPC) clus-
ters [7].

PERFORMANCE AND PRODUCTIVITY
The most CPU-intensive part of the ALS-U design

study is the optimization in the high-dimensional parame-
ter space using the multi-objective genetic algorithm
(MOGA)[8] on HPC clusters by using Tracy++ [9]. It is
critical to have natively compiled code to maximize the
runtime performance. But this approach may not be user-
friendly enough since many scientists are not comfortable
to deal with the complex tool-chain and software depend-
encies to compile the code. Python made this easy by
providing an interactive environment and excellent scien-
tific library support. By making C++ and Python work
together properly, we can get a balance of performance
and productivity.

Productivity will be further increased when Tracy++ is
used in the Jupyter Notebook, an interactive and compu-
tational environment which has been well recognized in
scientific and engineering fields. Other advantages in-
clude the contextual readability, reproducibility, and mo-
bility.

For example, astropy [10] for astronomy is already a
part of the Anaconda distribution [11]. There are also
Jupyter Notebooks available for accelerator physics [12].

Our effort is to port Tracy++ API to Python in an auto-
mated environment, using Jupyter Notebook running on
HPC clusters that hosts a Jupyter HUB [13].

TRACY++ FOR PYTHON
We started with porting the Tracy API to Python, then

migrated it to the HPC cluster.

Wrapper Creation
Tracy++ for Python is a Python module that wraps the

Tracy++ library. Among multiple options, we chose to use

SWIG [14] which is a tool to automate the wrapper gen-
eration of C/C++ libraries for various programming lan-
guages including Python.

The early version of Tracy++ uses C++ class inher-
itance intensively. Consequently, SWIG tries to wrap all
the Tracy++ entries. However, there are C++ features that
are not compatible with Python, overriding C++ opera-
tors, function signatures, virtual functions, and default
values for function parameters for example.

Some of these features are removed when Tracy was
cleaned up a few years ago [15]. Although it was to im-
prove performance, the effort of porting Tracy++ to Py-
thon also started. SWIG could not wrap the full API of
Tracy++ due to the complexity. However, it worked fine
with the trimmed version of it.

This time, the full version of Tracy++ was reconfigured
to enhance the usability for Python. One of the notable
changes is to control the visibility from Python properly.
Differential Algebra [16] is one of such examples. Alt-
hough it plays a significant role in the 6-dim particle
propagation with radiation loss, there is no need to use it
directly from Python. Therefore, it is not passed to SWIG.
In the case of default values, both C++ and Python sup-
port them but differently. Therefore, after removing them
in C++, Python can revive some of them if needed in the
helper module.

Tracy development has been on Windows in Visual
Studio where multiple projects are grouped into a unit
called solution. It includes Tracy++ and related libraries,
various client applications in C++ and the SWIG wrapper
project. When the library is updated, the entire solution
including the wrapper is also updated.

Helper Module
The wrapper creation has been entirely automated by

using SWIG. However, there are some repetitive patterns
required on the Python side. They are moved to a Python
helper module to provide the following functions for
seamless access from Python.

• Various listing and plotting functions as C++ layer
cannot write nor plot to the Jupyter Notebook output
cells.

• The accelerator lattice definition utilities to use Py-
thon lists efficiently.

• Conversion of corresponding numerical data types
between C++ and Python NumPy [17].

• Default values of the function parameters. Some of
them are the revival of those removed in the C++
layer.

* Work supported by the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231
† H_Nishimura@lbl.gov

WEPAB101 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
2818Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

02 Photon Sources and Electron Accelerators
A05 Synchrotron Radiation Facilities

Virtual Functions
A C++ class uses virtual methods so that the base class

can use the algorithm defined in its derived function.
However, if it’s derived class is in Python, this trick stops
working. This happens when a storage ring lattice is de-
fined as a new Python class derived from the Ring class
in C++.

The lattice is defined in Python and set to the data
member of the base class. The derived class may need to
define new methods for customized operations. Unfortu-
nately, the base class cannot see such Python functions
even by using the virtual methods. The call-back mecha-
nism may solve this issue. However, it is not used because
of its complexity. Such new operations have to be done in
Python. As Tracy++ provides a rich set of building
blocks, this is usually acceptable. An exception is the
evaluation function of the genetic algorithm calculations
done in C++. It must be supplied as a C++ function.
When the evaluation algorithm reaches to the level of
parameterization, it can be defined in Python as data. As
such calculations are never interactive, this solution is
acceptable.

Parallel Processing
Tracy++ has been used with MPI on the HPC clusters

for MOGA optimizations. This parallelization happens
outside of Tracy++. Therefore, it is out of the scope of
this paper, although Python can play a flexible role as its
job control language.

On the other hand, Tracy++ uses OpenMP [18] inter-
nally to utilize multiple CPU cores on a single PC in
parallel to calculate dynamic apertures and frequency
maps. As OpenMP is not visible from Python, these rou-
tines are wrapped as normal functions.

Data Access and Management
Python can access public data members of a C++ class.

However, they reside in the proxy in Python. The get and
set functions.

Data transfer becomes an issue if its size is too large
and memory management is not automated. It requires
extra caution to pass a dynamically allocated object over
the language boundary. The generic containers of C++
reduce this issue. Besides, Tracy++ requires a data con-
tainer created in Python, and passed to C++ to receive the
output result with a significant amount of data.

At the same time, the data transfer over the language
boundary should be minimized. A good example is the
dynamic aperture and frequency map calculations [19]. It
has been a common practice to pair their results. A new
function was created to do this effectively in parallel and
pass the result concisely to Python.

Simple genetic algorithm calculation is supported in
Tracy++ by using OpenMP. We often use it to replace
wide-range parameter scan in the high-dimensional pa-
rameter space. It performs very shallow optimization to
disqualify unusable lattices, and not to keep these candi-
dates for the best solution. Due to a large amount of out-
put data, the result is saved to a file and later processed

separately by using Pandas [20] and other statistical pack-
ages in Python. The rich availability of various packages
in the Notebook makes an evaluation of output data quite
efficient.

Parallel processing at the Python level is not included
yet.

Portability to Linux
Tracy++ for Python is always updated on Windows as

already explained. The port to Linux starts by updating
the full Tracy++ system including the SWIG project on a
local Linux box. This process is straightforward and
confirmed on several Linux distributions of Ubuntu and
RedHat families including Mint, CentOS and Scientific
Linux.

JUPYTER HUB ON THE CLUSTER
LBNL Lawrencium cluster [7] is a general purpose

High-Performance Computational Cluster built for scien-
tific computing. The Lawrencium infrastructure recently
provided the Jupyter Notebook service which has a user
friendly, graphical interface.

Tracy++ for Python is migrated to the cluster in three
phases. The first phase is to move the whole development
to the cluster environment. There, a user can choose to
work either from a web console which is provided by
Jupyter-Hub, or a traditional terminal via ssh. This signif-
icantly reduces the entrance barrier for users who are not
familiar with Linux or a cluster environment.

The second phase is to integrate the parallel capability
of the cluster into the Notebook. This requires fine tuning
of the build process on the system side. We are currently
in this phase.

The third phase is to introduce a distributed computing
at the Python level. We use the package, “MPI for Py-
thon” [21], to give the complete scalability to the high-
level routines in Python accessing Tracy++. This package
is also a part of Anaconda and is compatible with our
work. Our future effort will be with MPI for Python.

CONCLUSION

The combination of C++ and Python worked success-
fully with Tracy++. Generation of the wrapper for Tra-
cy++ for Python has been automated by using on SWIG.
The wrapper is always synced and updated on Windows.
Porting to a Linux PC is straightforward by using shell
scripts.

It works in Jupyter Notebook smoothly with the variety
of other Python packages for plotting, data analysis, and
symbolic calculations.

It was very timely that the LBNL Lawrencium HPC
cluster started offering the Jupyter service when there is a
need for more computing power using Python. Migration
to the Lawrencium HPC cluster turned out to be simple
and straightforward. Also, environment software modules
are used to manage users’ runtime environments dynami-
cally on Lawrencium, rather than local software manage-
ment on the local PC.

Proceedings of IPAC2017, Copenhagen, Denmark WEPAB101

02 Photon Sources and Electron Accelerators
A05 Synchrotron Radiation Facilities

ISBN 978-3-95450-182-3
2819 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Distributed computing on the HPC cluster in Python is
possible by using MPI for Python. Tracy++ for Python is
in the process of adopting it. As the CPU-intensive rou-
tines are all in C++, degradation should not be an issue
compared to the benefit.

This approach is the right direction for the future accel-
erator design studies. Future C++ development will con-
tinue to use Jupyter HUB on the HPC cluster in mind.

REFERENCES
[1] H. Nishimura, PAC'01, Chicago, USA, p.3006, (2001).
[2] LBL PUB-5172 Rev. LBL, (1986).
 A. Jackson, PAC'93, Washington, D.C, USA, p.1432,
 (1993).
[3] H. Nishimura, EPAC'88, Rome, Italy, p.803, (1989).
[4] H. Nishimura, ICAP 09, San Francisco, USA, p.326,

(2009).
[5] C. Sun, et. al., IPAC 2016, Busan, Korea, p.2959, (2016).
[6] http://jupyter.org
[7] http://lrc.lbl.gov
[8] L. Yang et. al., Nucl. Instr. and Meth. A 609, p.50,
 (2009).

[9] C. Sun, et. al., Phys. Rev. STAB 15, 054001 (2012).
[10] http://www.astropy.org
[11] https://www.continuum.io
[12] https://jupyter.radiasoft.org
[13] https://github.com/jupyterhub/jupyterhub
[14] http://swig.org
[15] H. Nishimura, et. al., IPAC 2015, Richmond, VA, USA,

p.1192, (2015).
[16] M.Berz, SSC-152, (1988).
 Leo Michelotti, IEEE PAC89, p.839, (1989).
 N. Malitskey et. al., SSCL-659, (1994).
[17] http://www.numpy.org
[18] http://www.openmp.org
[19] H. S. Dumas and J. Laskar, Phys. Rev. Lett. 70, 2975.
 (1993).
[20] http://pandas.pydata.org
[21] http://pythonhosted.org/mpi4py

WEPAB101 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
2820Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

02 Photon Sources and Electron Accelerators
A05 Synchrotron Radiation Facilities

