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Abstract 
 We proposed a method to reduce loosing particles in 

acceleration stage of synchrotrons. A slowly varying 
horizontal electrostatic field may be useful to de-excite 
synchrotron oscillations. Then we have to somehow 
observe the damping of amplitudes of synchrotron 
oscillations to confirm the effect. We assume that the 
synchrotron component of rationalized Hamiltonian in 
acceleration stage is kept constant. Our experimental 
results did not contradict with this assumption. Taking 
advantage of this assumption, we can easily confirm the 
damping of synchrotron oscillation amplitudes 
experimentally through the increase of synchrotron 
frequencies. 

INTRODUCTION 
 The author reported the energy exchange between the 

synchrotron and the betatron oscillations through the 
synchro-betatron difference resonant coupling [1]. Using 
an external power supply and inside situated electrodes to 
couple the synchrotron and the betatron oscillations, we 
may difference resonate the synchrotron oscillation with 
the betatron oscillation. The synchrotron oscillation 
damps out through the betatron oscillation. Then particles 
near the separatrix orbit might be pushed back deep inside 
the bucket to reduce the number of losing particles [2]. 
Here we discuss a mechanism to observe de-excitement 
of the synchrotron oscillation through observing increase 
of  its frequency. 

 We consider a reference particle (RP) of mass m. The 
particle is revolving on the reference closed orbit (RCO) 
of an average radius 0R with a revolution frequency 0ω , a 
velocity 0v , a total energy 0E  and a momentum 0p . In the 

right-handed curvilinear coordinate system ( , , )x s z ,  
, ,x s zp is the canonical momentum and s is the orbit length. 

We have ( )0 , ,x s zp p p p=
,

2 2 2 2
0 x s zp p p p= + +  and 

0 sp p≈ . x and xp are the off-momentum horizontal 
coordinate and momentum. We neglect the vertical 
motion and put 0z =  and 0zp = . 

 From Eq. (21) of the reference 1, we have the 
rationalized Hamiltonian H , which is composed of 
coasting, synchrotron and betatron motions, for an 
orbiting particle as follows. 
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D is the dispersion function, Cδ is the energy deviation 
of the coasting motion, Sδ the energy deviation of the 
synchrotron oscillation, ρ is the curvature of the dipole 
B-field, h is the harmonic number, η is the phase slip 
factor and Sψ is the phase angle for the synchronous 
particle. V is the effective rf cavity voltage seen by 
particles per passage [3]. We divide H into three 
components: CH for the coasting particle, H β for the 
betatron oscillation and SH for the synchrotron oscillation.   
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where sω is the synchrotron frequency and 
C SH H H Hβ= + + . In Eq. (4), we call the first term the 

dispersion part and the second term the potential part. 

  ___________________________________________  
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In fact, 1
D
 and  

S S
   ,  we have 
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HAMILTONIAN CHANGE IN
ACCELELATION STAGE  

We assume accelerations affect only
Cδ but not

Sδ . 

Hamiltonian is consists of CH  , H β and SH . 
From Eq. (1),  
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1s
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p

p
H Hβδ δ− = − + + ++ .                  (6) 

  We have 
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Some parameter changes are shown with " ".
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the particle goes back to the original RCO under the 

velocity 0v vδ+ . The particle is revolving with an 

average radius 0R , a revolution frequency 0ω δω+ , a 

total energy 0E Eδ+  and momentum 0p pδ+ . 
However, the energy deviation is reduced back to the 
original values E E EδΔ + → Δ  ( , 0Eδ Δ  ), but

0 0E E Eδ→ + . Notice sp pδ+  stays the same value. In 

Eq.(7), we put C Cδ δ ′′+ Δ → . In Eq.(7), (8) and (9), we 
define as: 

, , , ,, , , , andC S C S x s x sH H H H H H K Kβ β η ω η ω′ ′ ′ ′′ ′′ ′′ ′ ′ ′ ′′ ′′ ′′→ → .  

We have                         
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In the acceleration stage Cδ has the same value:  

C Cδ δ′′ ≈  ( C C Cδ δ δ′′+ Δ → → ) and C CH H′′ → .  

Since 
0 0 0 0
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 . 

 LHS and the 1st term in RHS (coasting part) of Eq. 
(10) return to the value before the acceleration. When the 
dipole magnetic field is increased after the acceleration,  

( )
0

1
SC S

s H
p

H
p βδ δ ′′− + + ′′− = + + .                     (14) 

Subtracting Eq. (14) from Eq. (6), we have  

S S
H H H H

β β
′′ ′′+ +=  .                            (15) 

The synchrotron plus betatron Hamiltonian is kept in 
the same value in the acceleration stage. Unless there is a 
special mechanism to exchange energy between the 
synchrotron and the betatron oscillations, each 
Hamiltonian keeps the same value independently. Finally, 
we obtain 
           

C C
H H ′′= ,   H H

β β
′′=    and   

S S
H H ′′= .            (16)  

Each component of the rationalized Hamiltonian H is 
kept constant in the acceleration stage. 

 
EXPERIMENTAL RESULTS 

Figure 1 and 2 are images of the spectrum analyzer 

(Tektronix RSA 3303B) taken for
12 6C +

beam of a heavy 
ion synchrotron at Gunma University Heavy Ion Medical 
Center (GHMC) [4]. Two symmetrical sidebands of 

a) Original circulating RP is on RCO. The rationalized 

b) When the on-momentum particle is accelerated, Eδ  

is the amount of increase in kinetic energy, pδ  is the 
increase of momentum and Rδ  is the increase of average 

radius. Defining 
0

2
0

E

E

δ
β

Δ = , we put 
C Cδ δ→ + Δ . The 

energy deviation EΔ and the orbital momentum are 
increased in acceleration stage  E E EδΔ → Δ +  and 

s sp p pδ→ + . In Eq. (2), (3), (4) and (5), we define as: 
, , , ,, , , , andC S C S x s xz sH H H H H H K Kβ β η ω η ω′ ′ ′ ′ ′ ′→ →

c) The dipole magnetic field has to be increased so that 
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synchrotron oscillations sω± around the revolution 
frequenc 0ω of two different energy were clearly 
recorded. The image was taken by the electrostatic beam 
positioning monitor, of which plate was used as an 
antenna and rfV , which is proportional to V , is the peak 
voltage of the rf cavity. Fig. 1 is the spectrum image of 
400 MeV/u beam ( rf 174VV = ). Two sidebands sω±  are 
a little less than 200Hz. Their signal strengths are longer 
than that of the revolution frequency 0ω (3.37809MHz). 
Fig. 2 is the spectrum image of 290 MeV/u beam (

rf 280VV = ). Two sidebands sω± are a little more than 
300Hz. Its signal strength is equivalent to that of the 
revolution frequency 0ω (3.05760MHz). Apparently 
synchrotron frequency sω is larger than the case of 400 
MeV/u beam since its energy 290 MeV/u is less and its 
peak voltage is larger (See Eq. (5)). On the other hand, its 
signal strength of the synchrotron oscillation (Fig. 2) is 
less than that of 400MeV/u beam (Fig. 1).  

 

DISCUSSION 
We assume that the phase slip factor has the same value 

since their RCO are the same. Since the synchrotron 
Hamiltonian SH , which is constant in the acceleration 
stage, consists of the dispersion and the potential parts, 
the potential part increases when the dispersion part 
decreases and vice versa.  

As we discussed in the previous section, there is an 
apparent difference between Fig.1 and Fig.2. In Fig.2 
(290 MeV/u beam), the potential part in Eq.(15) is 
expected to be larger than that of Fig.1(400 MeV/u beam) 

because its value of 
0

sω
ω

is larger. Then its dispersion part 

should be smaller. We observe shorter signal strength of 
the synchrotron oscillation in Fig.2 compared the signal 
strength in Figs.1. Although measurements of the 
rationalized dispersion Sδ are necessary for precise 
argument, signal strengths may proportional to values of 
the dispersion part, which is expected to be smaller in 
Fig.2 than that of Fig.1. Our argument that SH is constant 
looks promising.  

Taking advantage of this assumption, we might observe 
the variation of Sδ when a slowly varying perpendicular 
electrostatic field couples the synchrotron and the 
betatron oscillations through the difference resonance 
coupling. If the synchrotron oscillation amplitude is 
decreased, the synchrotron frequency will increase and 
the synchrotron oscillation damping is easily observable. 
We plan more precise experiments. 
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The synchrotron oscillation frequency sω± (peaks in 
both sides) are a little less than 200Hz. Their signal 
strengths are longer than that of the revolution frequency

0ω (centre peak 3.3780955MHz).  

 
 

The synchrotron oscillation frequency sω± (peaks in 
both sides) are a little larger than 300Hz. Their signal 
strengths are equivalent to that of the revolution 
frequency  0ω  (centre peak 3.0576025MHz). 

Apparently sω is larger than the case of 400 MeV/u 
beam (Fig.1)  since its energy 290 MeV/u is less and its 
peak voltage of the rf cavity is larger. On the other hand, 
their synchrotron signal strengths are less than that of 400 
MeV/u beam.    

 

Figure 1: the spectrum image of 400 MeV/u beam  
( rf 174VV = ). 

Figure 2: the spectrum image of 290 MeV/u beam  
( rf 280VV = ). 
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