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Abstract

In this paper we present a simple and fast approach to

extract essential parameters of a transverse feedback system

such as phase advances between pick-ups and kickers, frac-

tional tune, kicker delay, or per-bunch transverse activity

from discrete-time samples of position signals. In this ap-

proach the beam is excited and subsequent beam oscillations

are recorded. Given that any number of pick-ups can be

evaluated at once with only a marginal increase of transverse

beam size this method is suitable for regular health checks

of a transverse feedback system, e. g., for every injection.

The fundamental idea relies on the reconstruction of the

transverse phase space by means of digital filters. We sketch

a simple mathematical model to illustrate the underlying

method. Examples are given together with a set of filter ker-

nels for the fractional tunes of the LHC transverse feedback

system.

INTRODUCTION

For the operation of our transverse feedback system (TFB)

in CERN’s Large Hadron Collider (LHC) we aim on defining

a suitable method to extract vital feedback parameters in

a simple, fast, and non-destructive manner, which can be

carried out routinely to ensure that the active feedbacks for

the two beams are correctly configured and at their stable

working point.

TRANSVERSE PHASE SPACE

For our analysis we introduce an analytic signal, x[n],

which describes the evolution of a particle in normalized

transverse phase space coordinates, (y, y′), obtained from

the equations of motion, (Y, Y’), by applying the linear map,

Λs ,
(

y

y
′

)

= Λs

(

Y

Y’

)

, (1)

with Twiss parameters, α and β, being a function of the

observer’s longitudinal coordinate, s,

Λs =
1

√

β(s)

(

1 0

α(s) β(s)

)

. (2)

Normalized coordinates are satisfying the relation (y)2
+

(y′)2
= const.

A discrete-time complex-valued sequence, x[n], is then

formed as the sum of the normalized transverse position,

y[n], with the corresponding normalized slope, y′[n], multi-

plied by the imaginary unit j =
√
−1, such that

x[n] =
(

1 j
)

·
(

y

y
′

)

. (3)
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For simplicity we assume that the particle motion is dom-

inated by active damping (see also Ref. [1]), thus reducing

the analysis to linear optic effects of the magnetic guidance

field and exponential amplitude decay.

Thanks to the trigonometric nature of the normalized

coordinates and the complex notation of x[n] we reformulate

Eq. (3) by applying Euler’s formula,

x[n] = A0 e−jφ0

(

α · e−jω0

)n
. (4)

Equation (4) describes a damped harmonic oscillation at

turn index n, with angular frequencyω0 and a decay factor, α,

and with initial amplitude and phase denoted as A0 resp. φ0.

Note that the negative exponents preserve the direction of

rotation in normalized phase coordinates (positive phase 7→
clockwise; downstream).

FEEDBACK PARAMETERS

In order to extract essential parameters of a transverse

feedback system from bunch-by-bunch beam data we shall

consider the case of a beam in a steady state — any transients

have settled — which has been excited transversely by the

TFB for less than one turn (illustrated in Fig. 1).

Figure 1: Transverse phase space plot (normalized) at the

position of a pick-up. A transverse deflection commutes

from the location of the kicker to the coordinates of the pick-

up by a fixed phase angle (denoted as φ0), with subsequent

turns advancing in phase by the fractional tune (∆ϕ = 2πQ).

Fractional Tune

By rewriting Eq. (4) as recurrence formula we obtain the

coordinates for consecutive turns by evaluating

x[n] = x[n − 1] · αe−jω0 . (5)
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As can be seen, after a turn the sequence has advanced

in phase by ∆ϕ = ω0 ≡ 2πQ. Therefore, by taking the ratio

over two consecutive turns we can express the per-turn or

instantaneous fractional tune, Q[n], as

Q[n] =
1

2π
arg

{

x[n − 1]

x[n]

}

. (6)

It is worth noting that Eq. (6) allows for correctly character-

izing the fractional tune to be below or above the half-integer

resonance.

Phase Advance

As shown in Fig. 1, in the very same turn when the kick

(π/2 or + j) has been applied, i.e. n = 0, the betatron phase

advance between kicker and pick-up effectively transforms

the transverse deflection in normalized coordinates, thus

leading for the initial condition of Eq. (4),

φ0 =
π

2
− arg {x[0]} . (7)

More generally, according to Eq. (5) we notice that any

subsequent beam oscillations recorded by the pick-up will

advance by the fractional tune. We can therefore determine

also for later turns an initial phase, ψ[n], from the argument

of the analytic signal by including a linear phase term,

ψ[n] �
π

2
− arg

{

x[n] · e j2πQ ·n
}

. (8)

From this we instantly obtain the phase advance between

the kicker and the pick-up by averaging over M consecutive

turns,

ζ =
1

M

M−1
∑

k=0

ψ[k] . (9)

Transverse Activity

We define the transverse activity, A[n], as the magnitude

of the vector x[n],

A[n] = abs{x[n]} , (10)

which is a measure of the instantaneous oscillation amplitude

in the normalized transverse phase space.

From Eq. (4) it follows that,

A[n] = A0α
n , (11)

with the magnitude A0 defined by the initial excitation am-

plitude of the transverse deflection at turn n = 0.

Decay Time

By noting that the change in amplitude per turn in Eq. (5)

is constant and defined by the decay factor, α ≡ e−1/τd ,

we obtain the decay time, τd, from the transverse activity,

described in Eq. (11), at two time instances, n1 and n2, as

τd = (n2 − n1)

(

log
A[n1]

A[n2]

)−1

. (12)

Kicker Delay

For the stability of a TFB it is essential that kick signals

are well aligned with the time of arrival of the bunches. In

the following we derive a method which aims on quantifying

the kicker delay offset.

We now consider the case of a kick signal which is modu-

lated in amplitude over one turn. Thereby, a sinusoidal kick

waveform with M periods per machine turn is sampled by

a bunch with index k depending on the time of arrival at

the location of the kicker. The resulting bunch oscillation

magnitude, described as,

Ak = A0 · cos

(

2πM

h
· k + 2πM · η

)

, (13)

is then recorded as betatron oscillation decay at a down-

stream pick-up. Here, the harmonic number h represents the

maximum number of buckets per turn, and a delay offset

factor, η = ∆T/TRev, defined as the ratio between the kicker

delay offset, ∆T , and the revolution period, TRev.

If this kick exercise is repeated with two phase-shifted

versions of the modulation signal in quadrature, denoted

as AI and AQ, we can reconstruct an IQ-footprint of the

traversing bunches at the kicker as,

χ[k, n] = AI [k, n] + j AQ[k, n] . (14)

As can be easily verified, bunches are equally distributed

around a circle with constant radius. Therefore, unwinding

the phase response of Eq. (14) by taking into account a linear

position-dependent phase term,

ρ[n] = arg
{

χ[k, n] · e−j2πMk/h
}

, (15)

and averaging over populated bunches and N turns results

in,

θ =
1

N

N−1
∑

m=0

ρ[m] � 2πM · η . (16)

Since η = ∆T/TRev it follows for the delay offset:

∆T =
θ

2πM
· TRev . (17)

It is worth noting that the offset factor in Eq. (13) is

weighted by M , thus increasing the sensitivity to delay off-

sets. Ultimately, if M = h then the resulting phase in Eq. (15)

depends solely on the delay offset factor.

PHASE SPACE RECONSTRUCTION

In the following we assume that the pick-up signal process-

ing is providing a stream of normalized discrete-time sam-

ples, y[n], with position values recorded bunch-by-bunch

and turn-by-turn, as is the case for the LHC TFB.

In order to reconstruct the analytic signal in Eq. (3) we are

looking for a solution that allows to transform a sequence

of position samples, y[n], into a sequence of corresponding

slope samples, i.e.

y
′[n] = L{y[n]} . (18)
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(a) Transverse activity per bunch per turn. (b) Damping times per bunch. (c) Delay offset in nanoseconds.

Figure 2: Numerical results obtained from measurements with the LHC transverse feedback system.

Thereby, the operation denoted by L{·} in Eq. (18) is

commonly known as Hilbert transform and is explained for

example in Ref. [2].

A more practical approach can be found by noticing that

y
′[n] is the 90◦ phase-rotated version of y[n]. This phase

shift can be generated by simple means of digital filtering —

as it is already been done in the feedback phase controller [3].

Figure 3: Phase space reconstruction using two digital filters.

Figure 3 shows how the phase space is reconstructed by

means of two individual digital filters. The two branches

with filter kernels hI [n] for the in-phase component, and

hQ[n] for the quadrature component generate two quadra-

ture output signals, named yI [n] and yQ[n], which can be

combined to a final analytic signal, representing a recon-

struction of the transverse phase space,

c[n] = yI [n] + jyQ[n] = y[n] ∗ (hI + jhQ) . (19)

Elaborate filter kernels including DC suppression can be

defined, tuned for the fractional tunes of the particular plane

and attenuate out-of-band signals. Examples of filter kernels

for fractional tunes used in the LHC transverse feedback

systems are listed in Table 1. With only five coefficients these

filters are usable with possible damping times of 10 turns or

less.

RESULTS

Figure 2(a) shows the transverse activity of three individ-

ual bunches with active feedback, as recorded by the LHC

TFB. Measurements with several circulating batches showed

that damping times of ≈ 5 turns are achievable at the center

of batches with 72 bunches (see Fig. 2(b)).

Table 1: Filter Kernels LHC

(a) Horizontal, Q f = 0.275

hI [n] hQ[n]

-0.1837 +0.0447

-0.1224 -0.4922

+0.6122 +0.0000

-0.1224 +0.4922

-0.1837 -0.0447

(b) Vertical, Q f = 0.31

hI [n] hQ[n]

-0.1322 +0.1136

-0.1983 -0.4542

+0.6612 +0.0000

-0.1983 +0.4542

-0.1322 -0.1136

Figure 2(c) details the delay offset for one kicker module

of the LHC TFB, measured by two independent pick-ups

(red and blue), both confirming the fine-delay adjustment of

better than 0.5 ns.

SUMMARY AND CONCLUSION

We describe an alternative method for feedback parameter

extraction, based on transverse excitations generated by the

kicker of a TFB or at every injection, and a transverse phase

space reconstruction with digital filters for each individual

pick-up. The analysis are carried out solely in time domain

(no conversion to frequency domain).

Tests can be carried out as routine health checks at any

time, also during the acceleration, allowing evaluation of

closed loop feedback parameters (gain, phase, delay) or beam

parameters (tune, damping/decoherence time).

With this technique novel ideas for alternative feedback

controllers exploiting new control inputs for instantaneous

tune, oscillation amplitude, or feedback phase can be envis-

aged.
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