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Abstract
The storage ring which is located in the National Syn-

chrotron Radiation Center SOLARIS works under the
TANGO control system. So far the correction of an elec-
tron beam orbit has been performed with an algorithm im-
plemented in the Matlab Middle Layer (MML). To ensure
consistency of the correction process with the entire control
system, a new implementation of this algorithm has been
developed. The algorithm of orbit correction based on SVD
has been implemented as a TANGO Device, which is one
of the fundamental blocks used in the Tango control system.
The entire code has been written in the Python.

GENERAL DESCRIPTION OF THE
SYNCHROTRON

The Solaris storage ring has circumference equal to 96m.
The maximum current which can be accumulated is 500mA
at the maximum energy of 1.5GeV. The accelerator consists
of a lattice of twelve DBAs (double-bend achromat), con-
nected with 3.5m straight sections. Ten of them are reserved
for insertion devices and the other two are intended for beam
injection and RF systems. The main Solaris storage ring
parametes are presented in Table 1.

Table 1: The Main Storage Ring Parameters [1]

Energy 1.5GeV
Nominal current 500mA
Circumference 96m
RF frequency 99.931MHz
Natural emittance 5.598 nmrad
Energy spread 0.745 · 10−3

Radiation losses/turn 114.1 keV
Betatron tunes (H/V) 11.22/3.15
Corrected chromaticities (H/V) +1/+1
Momentum compaction factor 3.055 · 10−3

Total lifetime 13 h

BEAM POSITION MONITORS AND
CORRECTOR MAGNETS

Beam Position Monitors
Each of DBAs consist of three beam position monitors

(BPM), whose active elements are buttons. Two of them
are diagonal type BPMs and they are mounted at the end of
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Figure 1: Positions of BPMs and correctors. The magenta
crosses indicate locations of BPMs. The blue and red strips
indicate the position of dipole correctors [2].

a DBA. In the center of a DBA, BPM is placed, which has
buttons set horizontally (see Fig. 1). Matlab code for buttons
simulation has been done in [3], using Matlab boundary
element solving routines [4].
Signals from BPMs are registered by Libera Briliance+

modules, which are an expanded analogue-digital converter
with FPGA-based digital signal processing system support-
ing the Tango interface.

Corrector Magnets
Corrector sextupole magnets (SCi, SCo) include extra

windings (see Figs. 2 and 3), each of this windings is pow-
ered independently so that, this magnet can work as hori-
zontal/vertical correction dipol. Thanks to that correction
magnets do not take extra space.

The corrector strength is changed by changing the current
on the power supply. Therefore the operator is setting the
current which corresponds to certain corrector strength.
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Figure 2: Implementation of the vertical corrector [2].

The correctors and BPMs are located close to each other
in order to minimize the phase advance in between.
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Figure 3: Implementation of the horizontal corrector [2].

THE IDEA OF BEAM CORRECTION
BASED ON SVD

The principle mathematical "tool" used in orbit correc-
tion is a corrector-to-BPM response matrix. This matrix
determines dependence of beam position change according
to angular kick change of corrector magnets.

∆®x = R∆®θ, (1)

where: R - responsematrix,∆®x - vector of changing beam po-
sition in specific measurement points, ∆®θ - vector of chang-
ing specific correctors strength.
Columns of a response matrix are created through mea-

sure a difference between a beam position before and after
current impulse given to the corresponding corrector1. Then
this column is divided by the value of this current impulse.
Transforming the Eq. (1) to form

∆®θ = R−1
∆®x, (2)

we get the equation by which we can determine ∆®θ, ie values
that correctors strengths have to be change to make the beam
orbit change of ∆®x.
A main problem in the direct use of this equation is in

the "nature" of a response matrix. Very often a number of
correctors is not equal to the number of BPMs, therefore
this matrix is not square or can be a non-invertible matrix.
However, the SVD (singular value decomposition) the-

orem is helpful. For each matrix A ∈ RM×N, M > N ,
factorization exist

A = U(diag(wi))VT , (3)

where: U ∈ RM×N - columnar orthogonal, V ∈ RN×N -
orthogonal and wi ∈ R : i = 1, . . . , N . If matrix A is
non-invertible matrix (det(A) = 0) then equation A®x = ®b
has a solution, if ®b ∈ Range(A). This solution takes the
following form:

®x = Ã−1b + ®x0 (4)

where:
Ã−1 = V

(
diag(w̃−1

i )

)
UT , (5a)

1 The column number corresponds to the number of the corrector.

®x0 ∈ Ker(A), (5b)

w̃−1
i =

{
w−1
i gdy wi , 0,

0 gdy wi = 0 (5c)

The solution with ®x0 = 0 has the smallest form.
Thanks to this theorem we can, in a relatively easy way,

find ∆®θ in case, when a response matrix R is non-invertible.
The orbital correction process starts with themeasurement

of the orbit that exists at a given moment. It is also necessary
to determine which orbit we want to achieve (the so-called
"golden orbit"). Based on this data we can determine vector
∆®x. By inserting this vector into the equation (2), we get
a vector which components are determined by values of
correctors strength change [5, 6].

A PROGRAMMATIC DESCRIPTION OF
THE NEW SYSTEM

The whole implementation of the orbit correction algo-
rithm has been done in Python as a TANGO class and fits
into the idea of the Tango control system. By means of this
class is defining Tango Device instance, which is directly
responsible for doing correction. We can divide the whole
algorithm into two blocks.

The first of them is responsible for determining a response
matrix. An operator defining the value of the corrector
strength and numbers of repetition for a positive and a nega-
tive impulse. For each repetition a response matrix is deter-
mined. Next, these matrixes are averaged to one final matrix.
An inverse response matrix is determining by means of the
SVD algorithm, which is provided by Numpy package as
the linalg.pinv function. This function performs the Moore-
Penrose pseudo-inverse with automatic consideration of the
number of singular values specified by the operator. It should
be noted that the determining of the inverse matrix is not
strictly assigned to the process of determining the response
matrix and can also be performed during the operation.

The second block is directly responsible for the correction
execution. The main parameters set by the operator are: the
percentage by which the correction has to be performed, the
number of singular values and the list of correctors to be
excluded. The operator also defines the number of iteration
in the loop, which will be interrupted in the event of an
incident.

SIMPLE TEST MEASUREMENTS
The example response matrix (see Figs. 4 and 5) has been

determined for the current pulse, which value was 0.75A.
This pulse was both positive and negative.

RMS values for each BPM and for new and old implemen-
tation were determined. The results of these measurements
are shown in the Fig. 6, 7.
As one can see most of the measuring points in the new

implementation are below the value of 0.1mm.
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Figure 4: Response matrix.
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Figure 5: Eigenvalues of the response matrix.
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Figure 6: RMS for horizontal BPMs; blue — Tango imple-
mentation, orange — MML implementation.

CONCLUSION
For the synchrotron working in the Solaris National Syn-

chrotron Radiation Center the new implementation of an
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Figure 7: RMS for vertical BPMs; blue — Tango implemen-
tation, orange — MML implementation.

orbit correction algorithm has been done. This novel algo-
rithm is based on SVD and its purpose is to achieve full
integrity with the TANGO control system. Therefore the
whole program code has been written in Python as a Tango
Class, thus totally being adjusted to the use of the TANGO
control system, giving the possibility of replacing the cur-
rently working system implemented in MML. Most of the
measurement points of beam position RMS in particular
BPMs for the new implementation are located near the mea-
surement points obtained by using similar code in MML.
The new system needs some additional tests but the recently
obtained results show of its potential.

REFERENCES
[1] A. I. Wawrzyniak et al., “Solaris storage ring commissioning,”

in Proc. 7th Int. Particle Accelerator Conf. (IPAC’16), Busan,
Korea, May 2016, paper WEPOW029, pp. 2895–2897.

[2] The MAX IV Detailed Design Report, 3.4.
Lattice Errors and Correction, https://
www.maxiv.lu.se/wp-content/plugins/
alfresco-plugin/ajax/downloadFile.php?object_
id=a919525a-74b7-4118-b7a3-f46860d256af

[3] A. Kisiel et al., “Performance of the beam position monitor
system in Solaris synchrotron,” in Proc. 7th Int. Particle Ac-
celerator Conf. (IPAC’16), Busan, Korea, May 2016, paper
MOPMW017, pp. 432–434.

[4] A. Olmos, F. Perez, G. Rehm, "Matlab code for BPM button
geometry computation," in Proc. of DIPAC 2007, Venice, Italy,
2007, paper TUPC19, p.186.

[5] USPAS January 2005, http://http://uspas.fnal.gov/
materials/05UCB/UCB-Resp-Matrix-Measure.shtml

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Com-
puting. New York, NY, USA: Cambridge University Press,
2007.

Proceedings of IPAC2017, Copenhagen, Denmark TUPIK071

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-182-3
1863 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


