
CHIMERATK – A SOFTWARE TOOL KIT FOR CONTROL
APPLICATIONS

G. Varghese∗, M. Killenberg, M. Heuer, M. Hierholzer, L. Petrosyan, C. Schmidt,
N. Shehzad, T. Kozak, M. Viti, DESY Hamburg, Germany

S. Marsching, Aquenos GmbH, Germany
A. Piotrowski, FastLogic, Poland

P. Prędki, J. Wychowaniak, Łódź University of Technology, Poland
A. Dworzanski, K. Czuba, Warsaw University of Technology, Poland

C. Iatrou, J. Rahm, TU Dresden, Germany
M. Kuntzsch, R. Steinbrueck, Helmholtz-Zentrum Dresden Rossendorf, Germany

Abstract
The presentation provides an overview of the ChimeraTK

framework. The project started from a demand for soft-
ware libraries that provide convenient access to PCIe bus
based cards on the MicroTCA.4 platform. Previously called
MTCA4U, ChimeraTK is evolving towards a set of frame-
works and tools that enable users to build up control applica-
tions, while abstracting away specifics of the underlying sys-
tem. Initially, the focus of the project was the DeviceAccess
C++ library and its bindings for Matlab and Python, along
with a Qt based client that used DeviceAccess under the
hood. However, ChimeraTK has expanded to include
more tools like the ControlSystemAdapter, VirtualLab and
ApplicationCore. The ControlSystemAdapter framework
focuses on tools that enable application code to be writ-
ten in a middleware agnostic manner. VirtualLab focuses on
facilitating testing of application code and providing func-
tional mocks. The ApplicationCore library aims at unifying
application interfaces to other tools in the toolkit and im-
proving abstraction. We present an update on improvements
to the project and discuss motivations and applications for
these new set of tools introduced into the toolkit.

INTRODUCTION
MicroTCA.4 systems, with their ability to host power-

ful multi core CPUs, offer users the possibility of running
computationally involved algorithms directly on hardware
monitored by the facility control system. A common theme
in this use case is a need for bidirectional data access with the
MicroTCA Advanced Mezenine Cards (AMC) over a PCIe
bus. The MTCA4U project and DeviceAccess library in its
initial form was intended to provide a convenient, reusable
way to achieve this purpose [1]. However, the scope of the
project has shifted towards developing a more generic data
access framework along with a set a components that aim
at creating portable user applications across the different
control systems choices. This change in scope is refected
in renaming the MTCA4U project to ChimeraTK (“Control
system and Hardware Interface with Mapped and Extensible
Register-based device Abstraction Tool Kit”) [2].

∗ geogin.varghese@desy.de

The DeviceAccess library, ControlSystemAdapter,
ApplicationCore and VirtualLab are presently the main
sub components of the ChimeraTK project. In addition to
working with devices connected over the MicroTCA.4 PCIe
backplane, DeviceAccess has expanded to accommodate
data acquisition from any device for which a compatible
library back end can be written. This lets users at DESY
write applications that let them connect over Ethernet to
devices like the TMCB boards [3] for data retrieval and
control. The motivation for the ControlSystemAdapter was
the requirement to port already existing Radio Frequency
(RF) control applications at DESY for facilities adopting
MicroTCA.4 based RF control. These facilities, however
did not use the same control systems as used in DESY.
Since existing code was tightly coupled with the control
system middleware used at DESY, the effort required
for porting it to a different control system middleware
was intensive. A more generic solution was developing
the ControlSystemAdapter framework [4] to let users
write application code in a middleware independent
manner. Currently the ControlSystemAdapter supports
thread-safe, real-time capable user applications that can run
on DOOCS [5], EPICS 3 [6] and OPC UA [7] middleware.

The ApplicationCore provides a unified and convenient
way of using both DeviceAccess and ControlSystemAdapter
frameworks together in the application code (Fig. 1). It
lets users construct applications as a collection of modular
components with interactions among each other while mini-
mizing boiler plate code. The modular components make it
easier for structural changes; the modules may be rearranged,
interactions among them redefined or modules may be easily
extracted into its own application.

The other major component of the toolkit is the
VirtualLab framework that can be used for software test-
ing during application development [8]. The framework is
capable of creating mocks of actual hardware. This enables
test automation and is useful for setting up a continuous
integration support for the application software. The frame-
work is also useful for simulating external faults at desired
points of program execution. The Virtual lab framework was
used extensively to create software tests for the low-level RF
controller server for the ELBE accelerator at HZDR.

TUPIK049 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
1798Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems



Figure 2 illustrates the components of ChimeraTK, which
are described in more detail in the following sections.

Figure 1: Structural overview of a user application written
using ChimeraTK; user application can perform hardware
access (using DeviceAccess) and may run as a DOOCS,
EPICS 3 or OPC UA server (ControlSystemAdapter).

OPC-UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Application Core

Control System Adapter

Device Access Library

ReboT BackendPCIe Backend DOOCS Backend

TMCB2MicroTCA AMC Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

P
C
Ie

Dummy Backend

Figure 2: ChimeraTK: highlevel overview

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Command Line Tools

Matlab Bindings

Python Bindings
GUI:

Qt Hardware Monitor

Figure 3: Components of the DeviceAccess library.

THE DEVICEACCESS LIBRARY
The DeviceAccess library provides a generic C++ inter-

face that lets users access the I/O space of supported hard-
ware. Figure 3 shows the subcomponents of the library.
Generally, the connected device is expected to provide a
register name mapping for its address space, either using an
explicit mapping file or as a runtime list of registers (as is the
case with DOOCS Backends). Using the Register Accessor
object provided by the library, users can then refer to the
contents of these registers in the device’s I/O space. These
accessor objects provide a convenient iterable container for

the data in the accessed register, in addition to providing
methods that read or write into the corresponding register
address on the hardware.

Device Backends
Device Backends allow the library to support new devices.

The library, by default supports a PCIe backend, ReboT
Backend [3] and a DOOCS Backend which can be used to
access the variables exposed by a DOOCS server. In addition
a Dummy Backend is also provided; the primary use of this
backend is to serve as a device mock for functional and unit
testing of code. Any new device type for which the system
designer can provide a device backend, can be registered
with the framework using its plugin mechanism.

Logical Name Mapping
This feature of the framework lets users remap device

registers into logical groups as required. This is useful for
keeping conceptually connected components together when
designing code. The logical name mapping for example,
allows users to split up a multi element device register or
group independent registers into logical registers. This may
at times make for a more natural unit of grouping. Using
this feature, it is also possible to group registers that span
multiple hardware devices into a a single logical entity. The
read and write methods of a logical register accessor ob-
ject implicitly tracks the actual hardware addresses of each
element of the logical register.

Language Bindings and Tools
The framework provides language bindings for Python

and Matlab; these are helpful for scripting configuration
actions on hardware and for algorithm development. The
framework in addition bundles a Command line tool and a Qt
based Hardware monitor which helps users with prototyping
and testing their hardware.

CONTROL SYSTEM ADAPTER
The ControlSystemAdapter lets users write control ap-

plications that are decoupled from the underlying middle-
ware [4]. The adapter is responsible for mapping middleware
specific communication protocols, addressing schemes and
other functionality needed for the user application to run.
Currently the adapter supports DOOCS [5], EPICS 3 [6]
and OPC UA [7] middlewares

Process Variables
Process variables are ControlSystemAdapter variables

used by the user applications. The framework under the
hoodmaps these process variables into a middleware specific
data type. The process variables can represent numerical
data types, strings or arrays of numerical types. To reduce
complexity with thread safety and race conditions, these
process variables are unidirectional. However, it is possible
for the ControlSystemAdapter to modify an ingress process
variable. This is useful for covering cases where the user

Proceedings of IPAC2017, Copenhagen, Denmark TUPIK049

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-182-3
1799 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



input from the control system needs correction. The user
application, in such cases can ask the ControlSystemAdapter
to rectify the incorrect input by overriding the process vari-
able with the correct value. Figure 4 illustrates the use of
process variables in the user application ‘Device library’

Adapter Variable Pair "VOLTAGE"

SenderReceiver Control System Variable
"VOLTAGE"Update

Use "VOLTAGE"
Update "TEMPERATURE"

Adapter Variable Pair "TEMPERATURE"

ReceiverSender
Update

Control System MiddlewareDevice Library

Control System Variable
"TEMPERATURE"

D
e
v
ic

e
 T

h
re

a
d

C
o
m

m
u
n
ica

tio
n
 T

h
re

a
d

Figure 4: Process variables TEMPERATURE, VOLT-
AGE are mapped to the underlying control system by the
ControlSystemAdapter framework. Data flow is unidirec-
tional for these individual variables

Lock Free Queue Mechanism
In order to support real time user applications, the pro-

cess variable mapping must not block on thread locking
primitives. The framework uses a lock free mechanism to
realize this requirement. A pool of preallocated buffers are
used along with two queues - ‘filled buffers’ queue and the
‘available buffers’ queue. The sender and receiver part of
the process variable are always provided with references to
one of these buffers. An overview of the general mechanism
is illustrated in Fig. 5. For a more detailed description on
the implementation please see [4].

"Filled Buffers" Queue

"Available Buffers" Queue

Sender Receiver

Buffers
0 1 2 3

1 0

2 3

(empty)

Figure 5: Lock free queue mechanism for data transfer from
process variable to control system variable.

APPLICATION CORE
The ApplicationCore provides a convenient layer for in-

tegrating DeviceAccess and ControlSystemAdapter frame-
works in user applications. It lets users model their ap-
plications as a set of modules with interactions defined
among them. The framework keeps variable instantiation
(ControlSystemAdapter and DeviceAccess variables) and

application logic decoupled through the inversion of control
pattern. Figure 6 illustrates the structure of a typical user
application written using the ApplicationCore framework.

Figure 6: An example user application utilizing both
ControlSystemAdapter and DeviceAccess realized using
ApplicationCore

VIRTUAL LAB
The VirtualLab framework [8] can be used for functional

testing of the user application. It allows users to test their
software using functional mocks that replicate the minimum
required behavior of the actual hardware, which is needed
to test a component of the application software. This makes
it possible to set up continuous integration systems that run
the automated tests when changes are made to the software,
thus helping verify that correctness of the user application
is preserved.

Virtual Devices
Virtual Devices are the device mocks provided by the

VirtualLab framework. The Virtual Devices can simulate de-
sired functionality required for testing the user code. These
can also be fully integrated with the DeviceAccess library,
letting users utilize the frameworks API for access to the
mock device. In addition the Virtual Devices can also be
used to inject faults that test exception handling in the appli-
cation program.

Virtual Time
Virtual time lets users create mocks that simulate behavior

that is time dependent. The virtual time concept allows hav-
ing actions or data generation on virtual devices depending
on the point in time it was requested to do so. The feature
can also be used for synchronizing test actions with program
execution and also for simulating race condition events in
order to test error handling.

CONCLUSION
ChimeraTK provides users with tools to create applica-

tions that are decoupled from specifics of hardware and mid-
dleware systems. This lets users write control logic that is

TUPIK049 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
1800Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems



portable, potentially saving effort in circumstances where the
control application is needed in facilities that use a different
control system middleware than the one it currently runs on.
TheDeviceAccess library lets user applications perform data
acquisition from hardware through a generic API interface.
The ControlSystemAdapter lets the user application define
and use process variables that maps to variables in the under-
lying middleware being used. Currently, this means applica-
tions using the adapter can run on DOOCS [5], EPICS 3 [6]
and OPC UA [7] middlewares. The ApplicationCore pro-
vides a convenient layer that glues together features of the
DeviceAccess and ControlSystemAdapter libraries to cre-
ate modular user applications. The VirtualLab framework
lets users set up automated tests and continuous integration
systems for the application code development.

REFERENCES
[1] N. Shehzad et al. “Modular Software for MicroTCA.4 Based

Control Applications”, presented at the 20th Real Time Con-
ference (IEEE RT2016).

[2] ChimeraTK Repository, https://github.com/ChimeraTK

[3] G. Varghese et al. “Implementing a ReboT server on a Mi-
croBlaze”, presented at the 20th Real Time Conference (IEEE
RT2016).

[4] M. Killenberg et al. “Integrating real-time control applications
into different control systems”, 15th International Conference
on Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS2015).

[5] ControlSystemAdapter DOOCS, https://github.com/
ChimeraTK/ControlSystemAdapter-DoocsAdapter

[6] ControlSystemAdapter EPICS 3, http://oss.aquenos.
com/svnroot/epics-mtca4u/.

[7] ControlSystemAdapter OPC UA, https://github.com/
ChimeraTK/ControlSystemAdapter-OPC-UA-Adapter

[8] M. Hierholzer et al. “Software Tests and Simulations For Con-
trol Applications Based On Virtual Time”, 11th International
Workshop on Personal Computers and Particle Accelerator
Controls (PCaPAC’16).

Proceedings of IPAC2017, Copenhagen, Denmark TUPIK049

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-182-3
1801 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


