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Abstract
Integrable optics is an innovation in particle accelera-

tor design that enables strong nonlinear focusing without
generating parametric resonances. We use the Synergia
space-charge tracking code to investigate the application of
integrable optics to high-intensity hadron rings. We consider
an integrable rapid-cycling synchrotron (iRCS) designed to
replace the Fermilab Booster. We find that incorporating
integrability into the design suppresses the beam halo gener-
ated by a mismatched KV beam. Our iRCS design includes
other features of modern ring design such as low momentum
compaction factor and harmonically canceling sextupoles.
Experimental tests of high-intensity beams in integrable
lattices will take place over the next several years at the Fer-
milab Integrable Optics Test Accelerator (IOTA) and the
University of Maryland Electron Ring (UMER).

BACKGROUND
Integrable optics is a development in particle accelerator

technology that enables strong nonlinear focusing without
generating new parametric resonances [1]. A promising ap-
plication of integrable optics is in high-intensity rings, where
nonlinearity is known to suppress halo formation [2, 3] and
enhance Landau damping of charge-dominated collective
instabilities [4]
The efficacy of an accelerator design incorporating in-

tegrable optics will undergo comprehensive experimental
tests at the Fermilab Integrable Optics Test Accelerator
(IOTA) [5] and the University of Maryland Electron Ring
(UMER) [6] over the next several years.

At Fermilab, a core research priority is to improve the pro-
ton beam power for the high-energy fixed target program [7].
The LBNF/DUNE high-energy neutrino program [8] in
particular requires at least 900 kt·MW·year neutrino expo-
sure for a comprehensive measurement of the CP-violating
phase [7].

The Proton Improvement Plan II (PIP-II) will replace the
400 MeV linac with a new 800 MeV linac that will increase
the 120 GeV proton power of the Fermilab complex to 1.2
MW [9]. But to achieve a high-energy proton power signifi-
cantly beyond 1.2 MW, it will be necessary to replace the
Fermilab Booster with a modern RCS [7, 10].
In this paper, we present our space-charge simulations

of an integrable rapid-cycling synchotron (iRCS) design
to investigate the performance of integrable optics in this
context.

IRCS EXAMPLE LATTICE
In [1] a procedure for integrable accelerator design is

derived based on an alternating sequence of linear and non-

linear sections.The linear-sections, known as T-inserts, are
arc sections with π-integer betatron phase-advance in the hor-
izontal and vertical plane. The lattice should be dispersion-
free in the nonlinear section, and the horizontal and vertical
beta functions should be matched. A special nonlinear el-
liptical magnet is matched to the beta functions to provide
the nonlinear focusing. The manipulation of the beta func-
tions and phase-advances removes the time-dependence of
the nonlinear kick so as to avoid introducing parametric
resonances.
In [10] we introduced a specific design of an iRCS that

meets the essential single-particle requirements of an iRCS
- periodicity, bounded beta function, low momentum com-
paction factor, long dispersion-free drifts, and Danilov-
Nagaitsev integral accelerator design.
Modern RCS design also includes sextupoles for chro-

maticity correction. Furthermore integrability requires that
the horizontal and vertical chromaticity be matched [11,12].
Using weak sextupoles only to match the horizontal and ver-
tical chromaticity, the chromaticity is -33. Strong sextupoles
can be used to correct this chromaticity to -7.7 or any value
in between.

To maintain integrability, sextupole magnets should also
be located so that their effect cancels harmonically within
the T-insert arc. In this work, we carefully managed the
phase advances between the sextupoles to cancel the third-
order harmonic resonance driving terms. In general, these
third-order resonance driving terms are governed by

G3,0,l ∝

∫ L

0
β

3/2
x (s)S(s)e

j[3ψx (s)]ds

G2,±1,l ∝

∫ L

0
β

1/2
x (s)βy(s)S(s)e

j[ψx (s)±2ψy (s)]ds (1)

as given in [13].
The lattice can be optimized to anticipate space-charge

tune depression - the phase advances between the nonlinear
inserts and between sextupoles are correct when the beam
intensity matches its design value.

Figure 1 shows this version of the iRCS lattice and Table 1
shows the key parameters of this lattice.

SPACE-CHARGE SIMULATION
FRAMEWORK

This example iRCS lattice is designed to serve as a ver-
satile platform for a variety of multiparticle simulation ex-
periments. We use Synergia to calculate how the space-
charge forces interact with the nonlinear optics. Synergia
is a Python-based parallel code for multiparticle tracking
with imported CHEF functionality [14]. There is an ongoing
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Figure 1: Twiss parameters for one of the six periodic cells.
(top) Horizontal and vertical beta functions shown in black
and red, respectively. (middle) Location and length of mag-
netic lattice, elements where dipoles are shown as short
blue rectangles, quadrupoles as tall orange rectangles, and
sextupoles as green rectangles. (bottom) Linear dispersion
function.

Table 1: Parameters of iRCS Lattice

Parameter Value
Circumference 546 m
Periodicity 6
Bend Radius 15.6 m
Max Beta Function 35 m
Max Dispersion 0.8 m

Insertion Length 11.2 m
Phase-advance over insert 0.3 π
Betatron Tune 16.8
Matched Chromaticity -33
Corrected Chromaticity -7.7
Momentum Compaction 3.8 ×10−3

effort to simulate the IOTA lattice using Synergia [15] and
to benchmark it against IMPACT-Z.
Space-charge forces were calculated using the Synergia

2D-Hockney solver, a 2D particle-in-cell method described
in [16] and [17]. For this work we used 8 steps per element,
32 × 32 space-charge grid, map order 6, and 105 macropar-
ticles.

HALO FROM MISMATCHED KV BEAM
An important source of transverse beam halo is described

by the particle-core model [18]. In the particle-core model,
the breathing mode oscillations of a uniform-density beam
core can drive particles into the halo. We simulate a mis-
matched KV beam in our lattice in order to generate a source

of halo and evaluate the impact of nonlinear integrable op-
tics.

We compare two similar versions of the lattice, which we
refer to as the conventional case and the integral case. In the
conventional case, the nonlinear insert is deactivated and
there are strong sextupoles for chromaticity correction. In
the integrable case, the nonlinear insert is activated and there
are weak sextupoles only for matching the horizontal and
vertical chromaticity. The two cases represent two different
approaches to addressing collective instabilities, but those
instabilities are not simulated in this work.
In the integral case we have a phase advance through

the nonlinear insert of Q0 = 0.3, a strength parameter of
t = 0.15, and elliptic parameter c = 0.16 m1/2 (normalized
coordinates). The corresponding nonlinear small-amplitude
tune shifts are ∆Qx = Q0(

√
1 + 2t − 1) = 0.04 and ∆Qy =

Q0(
√

1 − 2t − 1) = −0.05 (see [1, 19]).
For this test, the beam energy is 0.8 GeV and the initial

95% normalized emittance is 20 mm mrad (or normalized
RMS emittance of 5 mm mrad). The KV space-charge tune-
shift is 0.05 corresponding to a ring intensity of 12 × 1012

protons unbunched beam.
The KV beam is generated with a uniform sampling of

phase-space coordinates with a Hamiltonitan value H0. The
initial distribution for the integral case will not be the same
as the conventional case, because the KV distribution for
the integral case follows the nonlinear equipotential con-
tours. A 5% mismatch is introduced by scaling the initial
y-coordinate by 0.95 and the initial x-coordinate by 1.05
while preserving the initial x ′ and y′ coordinates. There is
no initial momentum spread.
Figure 2 shows the RMS beam size for the conventional

and integrable case at the center of the nonlinear insert.
In the conventional case, the horizontal RMS size grows
steadily. In the integrable case, the quadrupole oscillation
damps rapidly over the first 150 revolutions. The nonlin-
ear elliptic focusing in the integrable case also causes the
equilibrium beam size to be larger in the vertical plane.

Figure 3 shows the horizontal particle distribution over the
same time scale. The halo formation is continuously driven
in the conventional case and suppressed in the integrable
case.
Figure 4 shows the tune distribution across one periodic

cell (1/6 of iRCS ring). The quadrupole component of
the nonlinear insert causes the integral case to have an off-
diagonal tune shift relative to the conventional case. We see
for this particular value of the nonlinear strength parameter
t the integrable case lies directly on the fourth order struc-
tural resonance line. As expected, the nonlinear insert does
not drive the fourth-order resonance even though it has a
significant octupole component.

CONCLUSIONS AND FUTURE WORK
We have updated our iRCS lattice design to include har-

monically canceling sextupoles and greater phase advance
through the nonlinear section. We have begun to perform
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Figure 2: RMS beam size in the horizontal (blue) and vertical
(orange) for conventional (top) and integrable (bottom) case.
Black dashed lines indicates nominal beam RMS without
mismatch.

Figure 3: Horizontal particle distribution over time for con-
ventional (top) and integrable (bottom) case. The color axis
is scaled to express the variation in the halo density instead
of the full density range. The black line indicates the 99.9th
percentile of the beam (100 macroparticles).

a variety of space-charge simulation experiments with this
lattice using Synergia. Our first major experiment is to study
the transverse dynamics of mismatched KV distributions.
In this work we confirm that our design incorporating inte-
grable optics provides superior suppression of beam halo
even while spanning a fourth-order resonance line.

Figure 4: Betatron tune diagram across one periodic cell for
conventional (top) and integrable (bottom). Darker points
indicate greater density of particles. The scale in the hori-
zontal and vertical axis is the same for both plots.

Our next step is to simulate a beam with waterbag distribu-
tion at the beam intensities required for the RCS to support
multi-MW operation of the Main Injector. Subsequently
we should extend these 2D space-charge simulations with
coasting beam to a full 3D space-charge simulation with
bunched beam.
There should be a more optimal iRCS lattice that could

have higher periodicity, greater compactness and/or the elim-
ination of sextupoles. We also plan to generate a version of
an iRCS lattice which breaks the periodicity with random
quadrupole errors and investigate the impact of integrable
optics on the dynamics aperture.
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