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Abstract
In this paper we propose to describe the self-force of a

particles beam, known as space charge, as a Hamiltonian
term dependent on the distribution of the particles’ coordi-
nates: Hsc ≡ Hsc(ρ(x, y, z)). This Hamiltonian is then used,
together with the kinetic component Hk in a Lie transform
to generate a transport map by e−L:Hk+Hsc : where the Lie
operator : Hk + Hsc : is defined according to the Dragt’s
notation [1]. Then the Lie transform is used to transport di-
rectly the distribution function ρ(x, y, z) in a self-consistent
iterative algorithm. The result of this proof-of-concept idea
is verified on a drift space and on a FODO channel and
compared with a traditional multi-particles simulation code.

INTRODUCTION
The research in particle accelerator is moving towards the

high intensity particle accelerators in order to have frontier
machine in terms of beam power such the European Spal-
lation Source proton Linac, currently under construction in
Lund, Sweden [2, 3]. The increasing in beam intensity rises
the issue of a proper treatment of the space-charge force in
the beam dynamic simulations. Today these simulations are
mainly treated with multi-particle codes with various algo-
rithm, like the so-called Particle-In-Cell (PIC), requiring
an intensive computational power. In this paper we apply
a different approach to simulate a beam, without transport-
ing multi-particle, under the effect of intense space-charge
force using the Lie transform as described in [1, Chapter 5],
and [4, Chapter 5]. The idea is to start from the beam dis-
tribution; find the associated potential solving the Maxwell
equations; using the potential in a Hamiltonian to propagate
the beam distribution itself in the next step and iterate it
for all the required steps using a symbolic calculator. The
article will introduce the Lie transform as formal solution of
the Hamilton equations then it will be applied to a general
function of the beam and finally to the specific cases of the
transport of the space charge. The results are compared with
the program TraceWin [5].

THE LIE TRANSFORM
We start considering the dynamics expressed by theHamil-

ton equations in form of Poisson brackets as

Ûq =
∂H
∂p
= −{H, q}; Ûp = −

∂H
∂q
= −{H, p} (1)

for any pair of conjugate variables q, p. We call the Poisson
bracket “waiting” operator {H, ·} =: H : as the Lie operator.
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Then the equations of Hamilton are

Ûq = − : H : q; Ûp = − : H : p. (2)

Moreover, because the Lie operator is a canonical trans-
formations, it sends canonical variables in new canonical
variables such that the time evolution of the new variable is
obtained again applying the Lie operator

Üq = − : H : Ûq =: H :2 q; Üp = − : H : Ûp =: H :2 p (3)

with the powers of the Lie operator are calculated iterating
the operation as : H :2 q =: H : (: H : q). If we consider
the Taylor expansion of the canonical variables in time, we
have

q(t) =
∞∑
n=0

tn

n!
dnq
dtn

�����
q=q0

= e−t:H :q
��
q=q0;p=p0

(4)

p(t) =
∞∑
n=0

tn

n!
dnp
dtn

�����
p=p0

= e−t:H :p
��
q=q0;p=p0

(5)

where the exponential is definedwith the usual Euler formula.
The operator e: f :g is general called the Lie transform of g
through f . The Lie transform can be used to calculate the
time evolution of every infinite derivable function of the
canonical coordinates. To prove this fact, let us consider
f = f (q, p), its time derivative is given by

Ûf =
∂ f
∂q
Ûq +

∂ f
∂p
Ûp =

∂ f
∂q

∂H
∂p
−
∂ f
∂p

∂H
∂q
= − : H : f (6)

with the solution

f [q(t), p(t)] = e−t:H : f [q, p]
��
q=q0;p=p0

. (7)

It is important to notice that the domain of the function f is
the initial phase space. When we “transport” the function,
we are interested to know how it acts on the final phase space.
So the correct way to evaluate the transport of a function of
the particles through the dynamics of a Hamiltonian is to
apply the inverse of the Lie transform from the co-domain to
the domain. The inverse Lie transform is easy to calculate
because we have that e−t:H :et:H : = 1.

An Example: Sextupole in 1D
If we want to transport the Courant-Snyder ellipse under

the effect of a sextupole the correct steps are:

• calculate the Hamiltonian of a particle with an exter-
nal sextupolar force as H = p2

x

2 + k3
x3

6 with k3 the
sextupolar gradient;
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• write the equation of the ellipse for the phase space as
η = βp2

x + 2αxpx + γx2 − ε = 0, with α, β, γ, ε the
usual Twiss parameters and the emittance;

• apply the inverse of the Lie transform for the length of
the sextupole L to the ellipse and evaluate when the
new function is equal to zero ηL = eL:H :η = 0.

The last step cannot be solved exactly but needs a certain
approximation. Or the exponential is truncated at a cer-
tain order of L, loosing its property of symplecticity, or the
Hamiltonian has to be split in fully integrable components
following the prescriptions of the Yoshida integrator [6].
The result of the above steps is shown in Fig. 1.

x [a.u.]

p
x

[a
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.]
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p
x
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.]

Figure 1: A Gaussian beam [left] is transported through
a sextupolar force [right]. The corresponding el-
lipse is also transported with the inverse Lie transform

eL: p
2
x

2 +k3
x3
6 : (βp2

x + 2αxpx + γx2 − ε
)
.

SPACE CHARGE
The formalism presented in the previous section can be

used, in principle, to transport the beam under the influence
of the space charge. Let’s assume that the beam is distributed
in the space with a density function given by ρ(x, y, z) trav-
eling with a velocity ®βc. The density is the projection of the
6D distribution function n(x, px, y, py, z, pz) onto the real
space

ρ(x, y, z) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

n(x, px, y, py, z, pz) dpxdpydpz . (8)

The beam will produce an electric scalar potential and a
magnetic vector potential that satisfy the Maxwell equations

∇2φ = −
ρ

ε0
; ∇ × ∇ × ®A = −µ0ρ ®βc (9)

under the assumption that the time derivatives of the electric
and magnetic field are zero. We now assume that βz >>
βx, βy , that means also ∂Az

∂z = 0, Ax = Ay = 0. So the
equations for the fields are

∂φ

∂x
+
∂φ

∂y
+
∂φ

∂z
= −

ρ

ε0
(10)

∂Az

∂x
+
∂Az

∂y
= −

ρ

ε0

β

c
. (11)

Once φ and Az are known, the contribution of the potential
to the Hamiltonian is

Hsc = q(φ − βcAz) (12)

where q is the charge; the βc factor in front of Az is due to
the dependency of the magnetic field from the speed of the
beam and the minus sign is because the magnetic force is
the opposite direction with respect to the electric force. The
full Hamiltonian is then given by the kinetic component Hk

plus the space charge component Hsc plus any other external
potential He. For example the Hamiltonian of the transverse
dynamics of a beam passing through a quadrupole is

H =
p2
x

2
+

p2
y

2
+ q(φ − βcAz) −

kq x2

2
+

kqy2

2
. (13)

The particles can be transported simply applying Eqs. (4,
5) under the approximation that the time interval (or the
length) is small enough such that the force of space-charge
can be considered constant. The distribution function n
itself is a function of the canonical coordinates, so it can
be transported by the Hamiltonian through the inverse Lie
transform

nnew = eL:H :nold (14)
and can be used to compute the new potential. Once the new
potential is calculated it can be replaced in the Hamiltonian
restarting the process in an iterative algorithm. This track-
ing is self-consistent because the potential is transported
at each step according to the dynamics described by the
Hamiltonian.

TRACKING
KV Distribution
The first application of the tracking method discussed

in the previous section is for a beam with a uniform parti-
cle distribution within an ellipse; the so-called Kapchinsky-
Vladimirsky distribution or KV distribution [7]. This distri-
bution is defined for an infinite long beam with a transverse
section represented by an ellipse uniformly filled with parti-
cles

ρ(x, y, z) =


I
πβcRxRy

, if x2

R2
x
+

y2

R2
y
≤ 1

0, if x2

R2
x
+

y2

R2
y
> 1

(15)

where Rx and Ry are the semiaxes of the ellipse. Because
the distribution is defined in two dimensions, the Eqs. (10)
and (11) differs only for the constant factor βc and we have
the solution [8, p. 67]

φ =
Az β

c
= −

I
2πε0βc

(
x2

Rx(Rx + Ry)
+

y2

Ry(Rx + Ry)

)
(16)

that leads to the Hamiltonian term

Hsc = −
qI

2πε0γ2βc

(
x2

Rx(Rx + Ry)
+

y2

Ry(Rx + Ry)

)
. (17)

An important property of the space charge term due to
a KV distribution is that it is quadratic in x and y, which
implies that the space charge force is linear.
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An Example: KV in Linear Elements

For this example we are going to assume a round KV
distribution (Rx = Ry) and will perform the calculations in
one dimension.
A self-consistent space charge tracking requires that the

length of the element be small enough to ensure that the
space charge potential can be considered constant during the
time interval. For cases with strong space charge this is in
general not the case and the tracking has to be done in small
steps. This can be done easily using the Lie transform, as
the length L is a parameter. At each step, the space charge
potential needs to be re-computed from the density function
and updated in the full Hamiltonian.

The Hamiltonian of a drift space in 1D
(
H = p2

x

2

)
is

quadratic in px . If the space charge term due to a KV distri-
bution is added to this Hamiltonian, we obtain a quadratic
function of x and px . In this case, since all forces are lin-
ear, the result of transporting a KV distribution is another
KV distribution. For this reason, instead of transporting the
distribution function we can simply transport the Courant-
Snyder ellipse as shown above. To compute the new space
charge potential after each step, Eq. (16) can be used with
the beam radius extracted from the new ellipse.

Figure 2 shows the result of transporting beam with a KV
distribution over a 1 m drift space and a beam current of
50 mA. The results are in good agreement with TraceWin.

Figure 2: Beam size along 1 m drift space, calculated using
Lie method (solid blue) and TraceWin (dashed red). Sim-
ulations for a 3 MeV proton beam of 50 mA with a KV
distribution, a normalized emittance of 0.1 π mm mrad and
Twiss parameters α = −1 π and β = 1 π mm / mrad.

For a sequence of linear elements, the method described
above can be applied element by element. For illustration, we
show here the case of KV distribution transported through a
FODO channel. The calculation is done in 2D, as the beam
cannot be round all the way through the FODO channel.
The comparison of the simulation of the FODO channel

using the method described in this paper and TraceWin is
shown in Fig. 3.

Figure 3: Beam size along a FODO channel for the horizon-
tal (top) and vertical (bottom) planes, calculated using Lie
method (solid blue) and TraceWin (dashed red). The FODO
channel is composed of two 1 m long quadrupoles with a
normalized strength k=0.1 separated by 5 m drift spaces.
Simulations for a 3 MeV proton beam of 50 mA with a KV
distribution, a normalized emittance of 0.1 π mmmrad (both
planes) and Twiss parameters αx = αy = 0 π, βx = 25 π
mm / mrad and βy = 14.2 π mm / mrad.

SUMMARY
This paper presents a self-consistent method to track a

high intensity beam relying on the Lie transform and using a
symbolic calculator, avoiding the use of multi-particle codes.
Examples for the KV distribution with linear elements are
in good agreement with other simulation tools.
The application of this method for non-KV distributions

and non-linear elements requires the computation of the
space charge potential solving the Poisson equation, which
is a non-trivial problem. The use of an approximate method
that allows to calculate an analytic space charge potential is
currently under study.
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