
: A PYTHON BUILD OF ACCELERATOR TOOLBOX

W. Rogers, Diamond Light Source, Oxfordshire, UK

N. Carmignani, L. Farvacque, B. Nash, ESRF, Grenoble, France

Abstract

Accelerator Toolbox [1] (AT) is a particle accelerator

modelling tool originally written in Matlab. It is used at

many accelerator facilities, particularly synchrotron light

sources, as an on-line model and is also used for off-line

beam dynamics studies. For speed of execution, the tracking

engine of AT was written in C and compiled for use in

Matlab. The C-based implementation allowed re-use of the

tracking engine compiled against the core Python libraries

to create a Python version of AT. For additional purposes of

speed, the C interface to the integration routines has been

modified allowing equal speeds for both Matlab and Python

interfaces, with an increase in speed relative to the original

Matlab version. This paper describes the adaptation process,

including adapting the Matlab build, creating the Python

build and laying the foundations for the additional Python

library implementation. Speed benchmarks are included

with comparison to other tracking codes Elegant and MADX.

INTRODUCTION

Particle tracking is an important part of accelerator

physics, used for all kinds of accelerator design and con-

figuration. Accelerator Toolbox is a particle tracking code

originally written by A. Terebilo at SLAC. AT is now used

at several facilities and gives reliable tracking results.

Matlab is a proprietary programming language widely

used in physics. Its strengths include the cross-platform in-

teractive environment including many plotting tools, and a

comprehensive set of built-in mathematical functions. How-

ever, there are some disadvantages to using the Matlab envi-

ronment: Matlab can be verbose, particularly in such matters

as handling arguments to functions, and designing large and

robust Matlab applications can be difficult, due to the flat

namespace and limited object-orientation. In addition, Mat-

lab requires a commercial licence.

Python is a free open-source programming language

widely used in science and industry. Although it can be

more difficult to get started using Python than Matlab, it is

more suited to building large applications. There are a num-

ber of third-party libraries available that provide most of the

functionality provided by Matlab, notably including Numpy,

Scipy and Matplotlib. However, none of the tracking codes

commonly used at synchrotron light sources are easy to use

with Python.

Much of the AT code is written in the Matlab language,

but computationally intensive routines were implemented

in C and compiled into Matlab MEX files. This design

decision to write low-level routines in C allows, with some

adjustments, compiling the code into a Python extension in

a very similar way to Matlab. Doing this gives the same

physics engine to Python code as the one used by the Matlab

version of AT. Using this engine, a Python library may be

provided that is compatible with AT but has the benefits

described above.

C IMPLEMENTATION

Most of the C code in AT is contained in pass methods:

functions that numerically calculate the effect in 6-D phase-

space on a particle passing through a particular element in a

lattice. The Matlab function atpass is then provided by a

top-level C file that interprets the Matlab structures, executes

the compiled code on the appropriate arrays, and converts

back into Matlab structures to return.

A very similar structure is now implemented in Python.

The original authors of AT were careful to separate the pure

physics code from the code that handles interpreting the

data in Matlab. This decision greatly helped in using the

same code for a separate Python implementation. Each pass

method was adapted to allow calling from either a Matlab

implementation or a Python implementation depending on

flags passed during compilation. There is one new C file

that interprets and returns Python objects in order to provide

the atpass function in Python.

Python has a widely-used numerical array library called

Numpy. Since the underlying arrays in Numpy are C-arrays,

Numpy was a natural choice to handle the arrays for passing

data into and out of the AT C routines.

NUMERICAL INTEGRITY

Unit Tests

A number of unit tests compare the results of Python

AT tracking with numbers manually extracted from Matlab.

This serves to check that the tracking though basic elements

matches what would be expected and would catch any errors

introduced by later changes to the code. However, extracting

numerical values into tests is tedious and any intentional

changes to the physics implementation would cause the tests

to fail, so this approach is not used exhaustively.

Comparison Tests

In newer versions of Matlab, a mechanism is provided

that allows calling Matlab directly from Python. This allows

a second way of comparing results: run the equivalent func-

tions from within Python and then again from Matlab, and

compare the output directly. This method is different in that

a change to underlying physics would not cause the tests to

fail. However, it requires a valid Matlab licence for the tests

to be run.

To demonstrate the equivalence of results, ten particles

with different initial conditions were tracked through the

ESRF EBS lattice [2] for 1000 turns in both AT and pyAT.

pyAT

Proceedings of IPAC2017, Copenhagen, Denmark THPAB060

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3855 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



To compare these, x and x’ are plotted against each other in

Fig. 1 and Fig. 2. These plots demonstrate visually that the

numerical results from AT and pyAT are identical.

Figure 1: Ten particles with different initial conditions

tracked using pyAT and plotted using the Matplotlib Python

library.

Figure 2: Ten particles with different initial conditions

tracked using AT and plotted using Matlab’s plotting tools.

COMPUTATIONAL SPEED

In order to track in AT, the elements of the lattice need

to be stored so that the pass methods can be used to track

through the elements. In the Matlab version of AT, the

elements were stored in Matlab structures, and the Mex

interface was used to access the element parameters. When

the same approach was implemented in Python, it was found

to be substantially slower than the Matlab version. To solve

this problem, we rewrote part of the interface code in each

of the integrators so that the lattice structures are now stored

directly using the C code. This resulted in a modest speed-up

of the Matlab version of AT, and allows for the Python and

Matlab versions to be equally fast.

Benchmarking

It is possible to compare the speed of execution of different

tracking codes using the same lattice. Since different codes

have different merits, this is not intended to determine the

best code for any application, but it does give an indication

of how long execution may take for particular studies.

The ESRF EBS lattice [2] was converted for use in AT,

pyAT, MADX version 5.00.00 [3] and Elegant version 32.0.0

[4], and a single particle was tracked for a specified number

of turns. Each magnet was divided into 30 integration steps;

tracking was done without synchrotron radiation and using

RF cavities. Each test was executed five times on a Dell

Optiplex 9020 PC with an Intel®CoreTM i7-4770S CPU.

The time of execution is shown in Fig. 1. It is clear that

the newer implementation of AT is faster than the original

implementation. Although start-up is slower for pyAT than

for AT, they converge to the same times of execution for a

large number of turns (see Fig. 3 and Table 1).

Figure 3: Time of execution for different codes.

Table 1: Execution Times to Track one Particle for 10 Turns4

Code Execution time

AT (updated) 25.95 ± 0.29 s

AT (original) 32.50 ± 0.97 s

Elegant 207.41 ± 3.44 s

Madx-ptc 348.65 ± 3.14 s

pyAT 25.26 ± 0.52 s

PYTHON IMPLEMENTATION

Although the core tracking engine of AT can now be

used from both Matlab and Python, much of the AT code is

written in Matlab. This part cannot be used in the Python

implementation, and so Python versions of the AT functions

and infrastructure are required. Currently implemented are a

number of Element classes of different types; any sequence

of these elements is understood as a lattice by the C library

and may be used for tracking. The physics functions con-

struct results from the tracking; those written so far include

THPAB060 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3856Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques



finding the closed orbit, computation of the one turn map

matrix and Twiss functions. An important function still

missing is the calculation of the equilibrium beam-sizes us-

ing the Ohmi-Envelope formalism; this requires computing

the diffusion matrix in each element. Constructing a useful

subset of the AT physics library is the next piece of work.

As with any tracking code, a lattice must be created or

imported before tracking. So far utilities have been written

to load a saved Matlab file from Python (load_mat.py)

and to create and save Python objects directly from Matlab

(atwritepy.m).

USING

The aim is to provide pyAT for anyone who wants to use

it via the command pip install pyat. This requires up-

loading a built version of the pyAT library to the online

repository PyPI [5]. The use of compiled C code in this

Python extension means that this would involve building the

extension for different operating systems and CPU architec-

tures.

The AT code is hosted on Sourceforge [6]. pyAT collabo-

ration is currently taking place on Github [7], and contribu-

tions from new collaborators are very welcome.

CONCLUSIONS

With the help of the AT community it has proved possible

to adapt the core of the AT library for use as a Python library.

This allows using a well-tested tracking engine in Python

applications, and it has been demonstrated that the results

are numerically identical to the Matlab implementation of

AT. Work is continuing converting Matlab physics code into

the equivalent Python functions, with the aim of providing

a complete and useful accelerator modelling tool in Python.

REFERENCES

[1] A. Terebilo, "Accelerator Toolbox for MATLAB", SLAC-PUB-

8732, 2001.

[2] J. C. Biasci et al., "A low emittance lattice for the ESRF",

Synchrotron Radiation News, vol. 27, Iss.6, 2014.

[3] MAD, http://mad.web.cern.ch/mad/

[4] M. Borland, "elegant: A Flexible SDDS-Compliant Code for

Accelerator Simulation," Advanced Photon Source LS-287,

September 2000.

[5] PyPI, https://pypi.python.org/pypi

[6] AT on Sourceforge, https://sourceforge.net/

projects/atcollab/

[7] pyAT on Github, https://github.com/willrogers/at

pyAT

Proceedings of IPAC2017, Copenhagen, Denmark THPAB060

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3857 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


