
NEW FEATURES OF THE 2017 ∗

K. Sjobak†, R. De Maria, E. McIntosh, A. Mereghetti, CERN, Geneva, Switzerland

J. Barranco , EPFL, Lausanne, Switzerland; M. Fitterer, Fermilab, IL, USA‡

V. Gupta§, Indian institute of technology Guwahati, Gwahati, India
J. Molson, LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

Abstract

The SixTrack particle tracking code is routinely used to

simulate particle trajectories in high energy circular ma-

chines like the LHC and FCC, and is deployed for massive

simulation campaigns on CERN clusters and on the BOINC

platform within the LHC@Home volunteering computing

project. The 2017 release brings many upgrades that im-

prove flexibility, performance, and accuracy. This paper

describes the new modules for wire- and electron lenses

(WIRE and ELEN), the expert interface for beam-beam el-

ement (BEAM/EXPERT), the extension of the number of

simultaneously tracked particles, the new Frequency Map

Analysis (FMA) postprocessing option, the generation of a

single zip of selected output files (ZIPF) in order to extend

the coverage of the studies in LHC@HOME (e.g. FMA and

on-line aperture checks), coupling to external codes (DYNK-

PIPE and BDEX), a new CMAKE based build- and test

mechanism, and internal restructuring.

INTRODUCTION

SixTrack is a 6D symplectic single-particle tracking code

written in Fortran, C, and C++ [1–3]. It is routinely used

for studying the dynamic aperture and collimation system

of high-energy circular machines like the LHC, FCC, and

SPS. The code runs on a large number of operating systems

(Linux, OS X, Free BSD, Net BSD, and Windows), compil-

ers (gfortran, ifort, and nagfor), and machine architectures

(x86, x86_64, and aarch64), with numerical results being

exactly reproduced across all of them [4]. This enables us

to run studies on local machines, local clusters, or using

LHC@HOME with BOINC [5,6].

Since the last BOINC release (version 4.5.17 from May

2014), several new features have been developed for Six-

Track, and many of those are summarized in this paper.

Other changes are described in separate papers, such as the

dynamic kicks (DYNK) module [7, 8], and on-line aperture

checking [9]. The usage of these new features are described

in the SixTrack user manual [10], which is maintained in

sync with and in the same git repository as the code.

∗ Research supported by the HL-LHC project
† kyrre.ness.sjoebaek@cern.ch
‡ This work is supported by the European Circular Energy-Frontier Collider

Study, H2020 Framework Programme under grant agreement no. 654305
§ Work supported by Google Summer of Code 2016

BEAM LINE ELEMENTS
Electron Lens

A new flexible input block for electron lenses used e.g.

for halo control or beam-beam compensation [11] has been

implemented, allowing the definition of electron lenses with

different electron beam distribution [12]. Currently only the

hollow electron lens is defined [13], however the structure of

the code would make it easy to add other types. Furthermore,

the parameters of the electron lens can be modified on a

turn-by-turn basis through DYNK, allowing simulation of

operation with the electron lens in a modulated mode.

Wire
Current bearing wires are considered as an elegant option

for the compensation of long-range beam-beam interactions

in the LHC [14–16]. To simulate the effect of the wire in

combination with beam-beam interactions for the LHC, a

new symplectic kick map has been developed for the wire

and implemented in SixTrack [13].

Improved Beam-Beam Lens
An optional “EXPERT” mode has been defined for the

BEAM block. This gives more freedom when defining the

parameters for the 6D beam-beam lens [17] than previously

possible, getting the Σ matrix for the strong beam from the

input file instead of assuming that the strong and weak beam

have certain symmetries and using the internally calculated

parameters for the weak beam. In particular, it is possible to

simulate arbitrary longitudinal distributions and orbit distor-

tions (e.g. crab crossing with RF curvature or asymmetric

beam sizes at the IP) of the strong beam by defining a series

of 6D slices with pre-computed parameters.

The input parameters can be computed and exported from

MAD-X [18] using the MAD-X to SixTrack converter. Fur-

thermore, since the parameters are now taken directly from

the input file, implementing the possibility to change the

parameters of the strong beam on a turn-by-turn basis using

DYNK is now within reach.

At the same time, the “traditional” interface is still avail-

able. To ease conversion, it now writes out the input for the

“EXPERT” interface that would exactly reproduce the same

results.

OUTPUT
In order to be able to bring back more data from e.g.

BOINC, a new option ZIPF has been added. This allows the

user to specify a list of output files that should be packed

in an archive called Sixout.zip, which can then be returned

SixTrack RELEASE

Proceedings of IPAC2017, Copenhagen, Denmark THPAB047

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3815 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



from the volunteer or the batch nodes. New features such as

Frequency Map Analysis and the online aperture will use

this feature to bring back the results.

Furthermore, a module “DUMP” for exporting the par-

ticle distribution every n turns at any or all point(s) in the

lattice has been added. This makes the results easier to post-

process and visualize in external programs. Several output

formats are possible, and adding more require only trivial

code changes.

FREQUENCY MAP ANALYSIS
The Frequency Map Analysis (FMA) is in general a pow-

erful tool for the analysis of non-linear dynamics based on

the calculation of the diffusion in tune versus the initial

tune of the particle or its normalized amplitude. The FMA

analysis currently implemented in SixTrack first reads the

particle distributions exported from DUMP, then normalizes

the particle amplitudes following the formalism described

in [19]. From this, it calculates the tune of each particle us-

ing a version of the PLATO library [20] modified for double

precision and exact reproducibility, which provides different

methods for the tune calculation. The diffusion in tune or

amplitude can then be visualized using the SixDeskDB [21]

extension of SixTrack’s post-processing tool SixDesk [22].

INCREASED PARTICLE LIMITS
Formerly SixTrack was limited to tracking only 64 parti-

cles at a time, this limit has now been increased to 65’536

particles. The old limit is sufficient for dynamic aperture

studies with a large number of turns, as the computing time

for each turn is kept relatively short; covering a larger num-

ber of phase-space points is done by launching multiple

simulations. However this limit is inefficient when running

simulations where many particles are tracked over fewer

turns, such as for collimation simulations. Special measures

are therefore taken in the collimation code to get around

this problem, calling the tracking loop multiple times and

resetting the particle distributions and DYNK each time.

However this necessitates extra initialization, slowing down

the computation. Another case where this limit is problem-

atic is for studying collective effects, which can be done by

coupling to external codes.

The main limitation preventing increasing the particle

number was that the data which is used in post-processing

was written to a separate file for each each particle pair. Ad-

ditionally, the arrays holding second order maps for thick

tracking have been moved to allocated arrays, avoiding ex-

cessive memory usage when doing thin tracking with large

particle numbers. It is now optionally possible to write this

data to a single file, which unlocks the possibility to track

more particles.

GENERALIZED COUPLING TO
EXTERNAL CODES

A general module for coupling to external codes is under

preparation, allowing the external code to change element

properties in the simulation on a turn-by-turn basis (DYNK-

PIPE), and to read and exchange particles at any point(s) in

the ring (BDEX). This allows evaluating the effects of e.g.

crab cavity beam loading and self-consistent simulations of

crab cavity failure scenarios [23], and to couple to external

scattering programs such as FLUKA. The BDEX block has

a significant feature overlap with the existing FLUKA cou-

pling [24], however it is intended to be more general, being

able to connect to multiple codes and easy to extend to new

cases.

INTERNAL CHANGES
In addition to the new features available to SixTrack users,

much has been changed behind the scenes. These changes

make the code easier to maintain, and reduce the effort neces-

sary to modify or understand the internals of the code. Some

of the most important of these changes are mentioned below.

Furthermore, the documentation has been improved, and ex-

plicit instructions for building the code across all supported

platforms and configurations have been provided [25].

Code Refactoring
In order to make DYNK possible, a unified frame-

work for initializing an element after changing its set-

tings was needed. This was produced as the subroutine

initialize_element, which is called at the start of the

simulation to propagate settings from the internal represen-

tation of the input files to the variables used in the tracking,

and then called again after changing the in-memory input

files through DYNK.

For the checkpoint/restart (C/R) version used for e.g.

BOINC, the “standard output” of the code is first written to

a temporary file and then later flushed to the actual output

file fort.6, while for the non-C/R version the output is

written directly to standard output. Before Fortran 2003, the

language provided no standardized way of looking up the

standard output unit, making it necessary to duplicate all

write statements. By using the ISO_FORTRAN_ENV module

from Fortran 2003, these almost-duplicate code lines could

be removed, saving a total of 8000 lines of code, and greatly

improving readability of many parts of the code.

The SixTrack code uses two preprocessors, one of which

is astuce. This program plays much of the same role as

the C preprocessor, gluing together the code seen by the

compiler from several call blocks similar to #include in C.

Unfortunately, the internals of this Fortran code were poorly

understood and not documented, and the program itself was

fragile to errors in its input, often silently producing cor-

rupted results. A rewrite (in C++) was therefore done; the

new version astuce++ has the benefit of not just being more

robust, but also making it possible to have long identifiers

for the call block names. It also makes it possible to com-

bine call blocks (+cd) from several source files (.s), which

will both reduce code duplication and make it possible to

split the currently mostly monolithic (single file) code into

several more manageable source files.

THPAB047 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3816Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques



Parts of the interface code for BOINC was re-factored;

the most important change here was to drop the input/output

zip/unzip functionality built into BOINC and instead use the

open-source library LibArchive [26]. The same library was

also used to implement ZIPF, described above.

The collimation section of the code, which should soon be

available on BOINC, has been split from a large and mostly

monolithic block into a number of smaller functions. These

are called at set points in tracking, for example before each

collimator, after each turn, etc. This has greatly simplified

the insertion of the interaction physics models from the codes

Merlin [27, 28] and Geant4 [29], allowing the user to select

their desired interaction model for collimation at compile

time.

Build and Test System
The build system needs to be able to handle many and

complex combinations of compile time feature options, com-

pilers, and operating systems. Furthermore, the build pro-

cess uses two non-standard pre-processors (astuce and

dafor) which are chained to produce and transform the ac-

tual compiled source files. Furthermore, multiple program-

ming languages and language versions are used throughout

the project. A shell- and makefile based system was previ-

ously used to build the code, however it was hard to maintain

and to extend, and it used completely separate and partially

duplicate code paths for several combinations of options,

compilers, and OSs. A purely make-based build system was

also written, however it ended up becoming overly compli-

cated in order to meet the requirements. A CMAKE based

build system was therefore written, which is conceptually

similar to the original shell- and make based system, gener-

ating a specialized makefile for each option combination. It

is however much more maintainable, easy to extend, works

on all target platforms, and supports parallel compilation

which significantly speeds up the build process.

A major benefit of a CMAKE based build system is the

built-in integration with CTEST. This makes running the

test suite automatic, making it easier to use and more useful.

This test suite covers a significant part of the code with 59

tests, and can also exercises the checkpoint/restarting and

BOINC input loading capability in each test. Furthermore,

tests results may be submitted to CDASH, which collects and

visualizes test results between different machines, platforms

etc. on a centralized webpage [30]. Finally, CTEST makes it

possible to collect code coverage information, which shows

which code lines have been exercised by the test suite; this

information is also displayed on the CDASH page.

Source Control with Git
The hosting of the SixTrack sources was moved from

CERN’s SVN service to GitHub [31]. This simplifies the

development process, especially with multiple contributors

working on different sub-projects at different pace, and many

developments ongoing in parallel. For this, the project’s

SVN history (which stretched back to version 4.0 from 2005)

was converted to the new format, keeping all the metadata

available after the transition. In addition to the excellent

support for branching and merging, git’s support for sub-

modules is very useful for handling the external libraries

linked from SixTrack.

For hosting the main repository, we also considered us-

ing CERN’s private GitLab service, however in the end we

decided to use GitHub in order to make it easier for ex-

ternal collaborators, because GitHub is more widely used,

and because the fork-and-pull model is a better fit for the

project’s typical workflow. Since SixTrack is an open source

project, there were no drawbacks to using such an external

service where the code must be publicly shown; further-

more since each developer has a git clone which contains

the entire repository information, there is no risks of loosing

the source code or version history should GitHub suddenly

become unavailable. Finally, GitHub’s features encourages

and helps structure the discussion about code changes and

issues.

CONCLUSIONS
As described in this paper, a large number of changes have

been made to SixTrack since the last BOINC release. These

new features will enable many new studies in the near future,

both for the current LHC, HL-LHC, FCC, SPS, and several

other machines. Furthermore, there have been several inter-

nal changes that makes the code easier to maintain, allowing

the development at an increased speed and decreased error

rate.

ACKNOWLEDGEMENTS
The BOINC volunteers of LHC@home are warmly

thanked for their contribution of CPU-time and especially

for helping testing the new executables over a large range of

platforms which were not easily available to the authors.

REFERENCES
[1] F. Schmidt, “SixTrack Version 4.2.16 Single Particle Tracking

Code Treating Transverse Motion with Synchrotron Oscilla-

tions in a Symplectic Manner”, CERN/SL/94-56, 2012.

[2] G. Ripken and F. Schmidt, “A symplectic six-dimensional

thin-lens formalism for tracking”, DESY 95–63 and

CERN/SL/95–12(AP), 1995.

[3] R. De Maria et al., “Recent developments and future plans

for SixTrack”, in Proc. 4th Int. Particle Accelerator Conf.
(IPAC’13), Shanghai, China, May 2013, paper MOPWO028,

pp. 948–950.

[4] E. McIntosh, paper in preparation.

[5] M. Giovannozzi et al., “LHC@Home: A volunteer computing

system for massive numerical simulations of beam dynamics

and high energy physics events” in Proc. 3rd Int. Particle
Accelerator Conf. (IPAC’12), New Orelans, LA, USA, May

2012, MOPPD061, pp. 505–507.

[6] A. Mereghetti et al., “Recent Development Activities of

SixDesk, the Simulation Environment for SixTrack”, pre-

sented at the 8th Int. Particle Accelerator Accelerator Conf.

(IPAC’17), Copenhagen, Denmark, May 2017, paper TH-

PAB045, this conference.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB047

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3817 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



[7] K. Sjobak, H. Burkhardt, R. De Maria, A. Mereghetti, and A.

Santamaría García, “General functionality for turn-dependent

element properties in SixTrack”, in Proc. 5th Int. Particle Ac-
celerator Conf. (IPAC’15), Richmond, VA, USA, May 2015,

paper MOPJE069, pp. 468–471.

[8] K. Sjobak, “Dynamic simulations in SixTrack”, in Proceed-

ings from the HL-LHC collimation workshop 2015, CERN,

to be published.

[9] A. Mereghetti et al., “SixTrack for Cleaning Studies: 2017

Updates”, presented at the 8th Int. Particle Accelerator Accel-

erator Conf. (IPAC’17), Copenhagen, Denmark, May 2017,

paper THPAB046, this conference.

[10] F. Schmidt, R. De Maria, M. Fitterer, K. Sjobak, et
al., “SixTrack version 4.6.16 – Single Particle Tracking

Code Treating Transverse Motion with Synchrotron Oscil-

lations in a Symplectic Manner – User’s reference man-

ual” http://sixtrack.web.cern.ch/SixTrack/doc/
manual_dev/six.pdf

[11] V. Shiltsev, “Electron Lenses for Super-Colliders”, Springer,

2016

[12] M. Fitterer et al., “Implementation of Hollow Electron Lenses

in SixTrack and first simulation results for the HL-LHC”, pre-

sented at the 8th Int. Particle Accelerator Accelerator Conf.

(IPAC’17), Copenhagen, Denmark, May 2017, paper TH-

PAB041, this conference.

[13] R. De Maria et al., “SixTrack Physics Manual”,

http://sixtrack.web.cern.ch/SixTrack/doc/
physics_manual/sixphys.pdf

[14] J.-P. Koutchouk, “Principle of a Correction of the Long-

Range Beam-Beam Effect in LHC using Electromagnetic

Lenses”, LHC Project Note 223, 2000.

[15] J.-P. Koutchouk, “Correction of the Long-Range Beam-Beam

Effect in LHC using Electromagnetic Lenses”, SL Report

2001-048, 2001.

[16] S. Fartoukh, A. Valishev, Y. Papaphilippou, and D. Shatilov,

“Compensation of the long-range beam-beam interactions as

a path towards new configurations for the high luminosity

LHC”, Phy. Rev. ST Accel. Beams, vol. 18, p. 121001, Dec.

2015.

[17] L.H.A. Leunissen et al., “Six-dimensional beam-beam kick

including coupled motion”, Phys. Rev. ST Accel. Beams, vol.

3, December 2000, p. 124002.

[18] MAD-X Project website, http://cern.ch/mad

[19] F. Willeke and G. Ripken, “Methods of Beam Optics", DESY

88-114, 1988.

[20] M. Giovannozzi, E. Todesco, A. Bazzani, and R. Bartolini,

“PLATO: a program library for the analysis of nonlinear be-

tatronic motion”, Nucl. Instrum. and Methods A, vol. 388,

1996.

[21] SixDeskDB GitHub page, https://github.com/
SixTrack/SixDeskDB

[22] E. McIntosh, and R. De Maria, “The SixDesk Run Envi-

ronment for SixTrack”, CERN-ATS-Note-2012-089 TECH,

2012.

[23] R. Apsimon, G. Burt, A.C. Dexter, P. Baudrenghien, K.

Sjobak, and R. Appleby “Modelling the Low Level RF

Response on the Beam During Crab Cavity Quench”,

presented at the 8th Int. Particle Accelerator Accelerator

Conf. (IPAC’17), Copenhagen, Denmark, May 2017, paper

MOPVA102, this conference.

[24] A. Mereghetti et al., “SixTrack-FLUKA active coupling for

the upgrade of the SPS scrapers”, in Proc. 4th Int. Particle
Accelerator Conf. (IPAC’13), Shanghai, China, May 2013,

paper WEPEA064, pp. 2657–2659.

[25] K. Sjobak and J. Molson, “Compiling, building, and testing

SixTrack”, http://sixtrack.web.cern.ch/SixTrack/
doc/building_sixtrack/building_sixtrack.pdf

[26] libarchive “Multi-format archive and compression library”

website, https://www.libarchive.org/.

[27] R.B. Appleby, R.J. Barlow, J.G. Molson, M. Serluca, and

A. Toader, “The practical Pomeron for high energy proton

collimation” Eur. Phys. J. C, vol. 76, p. 520, October 2016.

[28] J. Molson et al., “A Comparison of Interaction Physics for

Proton Collimation Systems in Current Simulation Tools”,

presented at the 8th Int. Particle Accelerator Accelerator

Conf. (IPAC’17), Copenhagen, Denmark, May 2017, paper

WEOBA1, this conference.

[29] S. Agostinelli et al., “Geant4 – a simulation toolkit”, Nucl.

Instrum. and Methods A, vol. 506, p. 250–303, July 2003.

[30] CDash dashboard for SixTrack, http://abp-cdash.web.
cern.ch/abp-cdash/index.php?project=SixTrack

[31] SixTrack GitHub page, https://github.com/SixTrack/
SixTrack

THPAB047 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3818Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques


