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Abstract

Most nonlinear lattice tuning methods use only part of the

optimization constraints, for example, part of the driving

terms, nonlinear detuning, lifetime or injection efficiency.

Even though some of the nonlinear properties can be im-

proved, it is not guaranteed the nonlinear lattice is fully op-

timized. In this paper we propose to characterize the non-

linear lattice by correcting the betatron phase advance and

detuning of the off-orbit lattices. It is shown that all the

leading order optimization constraints are restored in this

approach. One advantage of this new method is that the

measurement is independent of BPM calibration errors. We

succeed in both simulation and experiment in identifying

the intentionally added sextupole errors to a precision of

0.1%.

INTRODUCTION

There are many ways to fine-tune the linear lattice; how-

ever, the online nonlinear characterization has always been

a challenge. The reason is two fold. First the multipole (>4

poles) effects are small in comparison to the quadrupole fo-

cusing effect. For example, the parasitic oscillation induced

by the sextupole driving terms is 2-3 orders smaller than

the betatron oscillation amplitude [1]. In such a situation

it is difficult to resolve the magnet setting error, which is

on the order of 10−4 to 10−3. The second obstacle is the

complexity of the nonlinear constraints. So far most of the

nonlinear tuning methods have focused on part of the non-

linear constraints, such as the driving terms [2, 3], the tune

dependence on the amplitude [4], and either the lifetime [5]

or the injection efficiency [6]. We learned from dynamic

aperture optimization that the completeness of the nonlinear

constraints are necessary; therefore partial correction does

not guarantee the lattice is optimized.

In this paper we propose to use the betatron phase ad-

vance as a measure for the nonlinear lattice characterization.

The idea is to correct the focusing error of the off-centered

sextupoles in a lattice with perturbed orbit. This phase mea-

surement is fast, precise, and independent of the BPM cali-

bration. We show that the proposed scheme treats the com-

plete set of the nonlinear constraints, i.e., all the driving

terms and the detuning terms.

There are two ways to offset the beam in the sextupoles.

One way is to create an orbit wave by powering a horizontal

orbit corrector. However some of the sextupoles might have

close-to-zero offset in this case; hence at least two correc-

tors separated by π/2 phase advance must be used. Simi-

lar to the LOCO [7] approach, adding more correctors im-

proves precision and minimizes degeneracy. The second
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way is to run the beam at off-momentum. It can be shown

that in the first case phase advances are functions of the ge-

ometric driving terms, and in the second case they depend

on the chromatic driving terms. Therefore both setups are

needed for a complete nonlinear characterization. The peak

orbit deviation must be large enough to excite measurable

focusing effects. The bending angle or the momentum off-

set can be precisely determined from fitting the orbit change

at all the BPM.

A study lattice can be created with the applied bending

angle or the momentum offset. The phase difference be-

tween the original model and the study lattice can be calcu-

lated. Comparing the phase difference to the measurement

gives the phase error. The response matrix of the sextupoles

can be calculated from the study lattice. When the setup

changes, such as switching to another corrector or run the

beam at a different momentum, another study lattice must

be created. The response matrices and the phase error vec-

tors must be assembled together. Similar to the linear cor-

rection, the error phase vector is multiplied by the inverse

response matrix and the correction is obtained.

Dynamic aperture optimization requires the necessary

nonlinear constraints be: the leading order driving terms,

the amplitude dependent tune shift terms, and the linear and

nonlinear chromaticity. The leading order driving terms are

constrained by the phase error correction. For completeness

the following terms are included into the penalty vector:

dνx
dJx
,
dνx
dJy
,
dνy
dJy
, ξ

(1)
x , ξ

(1)
y , ξ

(2)
x , ξ

(2)
y (1)

The response matrix for these terms should be obtained

from the original lattice. We have tried including the higher

order terms, such as
d2

νx

dJ2
x

and ξ
(3)
y , however they are not lin-

ear functions of the sextupole strength and therefore it is

ineffective to use a matrix to correct them.

APPLYING TO NSLS-II

In the following text NSLS-II is used as an example to

illustrate the method. The first step is to create orbit bumps.

The phase vector must be measured with or without the

bump so the difference caused by the sextupoles can be mea-

sured. Figure 1 shows the two types of orbit bumps and the

fitting results. The fitted angle or the momentum offset are

used to generate study lattices.

The phase difference between the study lattice and the

original lattice is given by,

Δφi = ψ
std
i+1 − ψ

std
i − (ψ

org

i+1
− ψ

org

i
), (2)

where the subscript indicates the BPM index, ψi is the phase

advance at BPM i, the superscript stands for “study” or

MOPIK124 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
828Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D01 Beam Optics - Lattices, Correction Schemes, Transport



Figure 1: The measured and the fitted orbit. Top: The fitted

bending angle is 0.18 mr. Bottom: The fitted momentum

offset is -0.6%.

“original”. The above phase difference can be either mea-

sured, or calculated from the model [8]. Comparison of

the two cases gives the phase error. Figure 2 shows the

measured phase change caused by the orbit offsets shown

in Fig. 1 and the model prediction.

Using the calculated response matrix and the phase error,

the sextupole strength correction can be computed. Figure

3 shows the error before and after correction for one of the

study lattices. The same measurement was repeated with 20

correctors and at 4 momentum-offsets. Sextupole response

matrix was calculated for all the perturbed lattices. The as-

sembled response matrix was used to compute the sextupole

correction. The sextupole correction is shown in Fig. 4. The

repeatable pattern is due to the sextupoles being powered in

series in every 6 cells. The nonzero average of 0.1 1/m3,

or, -0.27%, is caused by either calibration error, or energy

mismatch between the sextupoles and the dipoles.

The rms phase error before and after the correction are

plotted in Fig. 5. The residual error is about 2.5 mr, and the

amplitude shows a beta function dependence. During the

experiment the applied bending angle is approximately the

same for all the correctors, however the peak orbit distor-

tion differs due to the beta function at the individual correc-

tors. The phase deviation from the model depends on the

orbit offset in the sextupole therefore the pattern emerges in

Figure 2: The measured and the calculated phase change

caused by the off-centered sextupoles. Top: The corrector

was changed by 0.18 mr. Bottom: The momentum offset

was -0.6%. The error bar was obtained from 6 measure-

ments. They correspond to the orbit change in Fig. 1, but

only one plane is plotted. In both cases only part of the ring

is shown for clear view.

Figure 3: The initial and the residual phase error after one

round of correction. One plane is shown only.

Fig. 5. The horizontal residual has similar amplitude. The

off-momentum phase error reduction is small, due probably

to the large dispersion deviation (shown in Fig. 1). Some of

the nonlinear terms, such as dνx/dJx can be corrected in

one iteration, however the other terms converge slowly.
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Figure 4: The sextupole strength error calculated from all

the study lattices.

Figure 5: The vertical phase error before and after one cor-

rection. Each point corresponds to a study lattice which is

perturbed by one corrector at the shown location. The bend-

ing angle is about 0.2mr for all the correctors.

CONFIRMATION OF THE APPROACH

We tested the algorithm on the NSLS-II storage ring.

An error lattice was created by decreasing 10A in one of

the sextupole curcuits. The corresponding strength change

was ΔK2 = 4.2m−3 for the group of 6 sextupoles. Then

the phase vector and the nonlinear detuning terms were

measured and compared to the original lattice. The algo-

rithm was used to identify the error, and the results are plot-

ted in Fig. 6. Among 54 power supplies the result clearly

points to the changed circuit. The amplitude also agrees

very well with the input value. The background error of

ΔK2 = 0.5m−3 can be lowered if a smaller number of eigen-

modes are kept from the inversion calculation; however the

amplitude at index 39 will also be smaller. This is a com-

mon problem of the inverse matrix calculation, and iteration

must be performed to reduce the noise level.

Figure 6: The cross shows the index number (39) of the

altered curcuit with ΔK2 = 4.2m−3, and the red curve is the

error identified by the algorithm.

CONCLUSION

The nonlinear lattice can be characterized by correcting

the focusing error of the sextupoles with the off-centered

probing beam. The proposed approach treats the complete

set of the nonlinear constraints. It was demonstrated at
NSLS-II that the sextupole errors were identified to a high

precision.
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