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Abstract
One of the objective of The CLIC Test Facility (CTF3) at

CERN is to demonstrate the CLIC Drive Beam Recombi-
nation concept. An accurate control of the transverse beam
parameters is necessary in order to succeed in preserving the
beam quality after the recombination. During the activity
of the facility we improved our tools and technique for char-
acterising the beam transverse phase space before and after
recombination. The common quadrupole scan technique
was improved by performing constant-beam-size measure-
ment and it was enriched by a tomographic reconstruction
of the phase-space. Moreover studies have been performed
in order to estimate and subtract the impact of dispersion on
such a measurements. An overview of these techniques will
be presented with actual measurements performed over the
last year of operation of the facility.

INTRODUCTION
The CLIC Test Facility (CTF3) [1] at CERN aims to

demonstrate the feasibility of the key technologies of the
Compact Linear Collider (CLIC) design [2]. One of the
key aspects of CLIC is its Drive Beam recombination. At
CTF3 an initially 1.2 µs long train of bunches at 1.5 GHz
is recombined with itself in a complex of delay lines and
rings in order to produce a 140 ns long train at 12 GHz. Dur-
ing the recombination process different parts of the initial
train undertake different paths before being merged together.
In order to preserve the projected emittance of the beam
an optics that produces the same transverse (and longitudi-
nal) phase-space distribution irrespectively of the path is
necessary.

At CTF3 the quadrupole scan technique has been the pri-
mary tool to verify the optics and the orbit closure between
the different paths, as well as to identify dispersion leakage
and chromatic aberrations. In the following sections we in-
troduce the basic mathematical concept used, and we discuss
some actual measurements performed at CTF3.

QUADRUPOLE SCAN TECHNIQUE
The quadrupole scan technique is one of the main methods

for measuring the transverse Twiss parameters of relativistic
beams in transfer lines, and it is extensively documented
in the literature (e.g. in [3]). Here we recall only the basic
principles for the simplest case of a linear and uncoupled
transfer line, where one can treat the horizontal and vertical
phase-spaces independently using a 2D matrix formalism.
∗ davide.gamba@cern.ch

A quadrupole scan consists in reconstructing the transverse
phase-space distribution at some location along a beam line
by measuring the beam profile downstream. In linear optics
the transfer matrix from a reconstruction (R) to a measure-
ment (M) location can be written as:(
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where A, B, C, D are coefficients that depends on the layout
of the beam line and on the strength of its quadrupoles. The
beam variance (σ2

M ) at the measurement location can be
expressed as a function of the Twiss parameters αR, βR and
γR at the reconstruction location as:
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where ε is the beam geometric emittance1. One can measure
the beam variance σ2

M,i (e.g. with an intercepting screen
as normally done at CTF3) while varying the strength of
the quadrupoles and therefore the coefficients of the transfer
matrix, and so solve linear system of equations:
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Finally by knowing that the Twiss parameters must satisfy
the relation βγ − α2 = 1, one can disentangle and obtain
both the beam emittance and the Twiss parameters at the
reconstruction location.
The necessary condition for obtaining a good fit is that

the matrix in Eq. (3) is well conditioned. A standard way
is to vary a single quadrupole strength such that the beam
size at the measurement location goes through a minimum.
However this is not necessary, and sometimes one might
want to keep the beam size constant or within a certain range
due to limitations of the measurement device (e.g. poor
resolution or field of view of the screen used). This was
already exploited at the former CLIC Test Facility 2 (CTF2)
in [4] and used elsewhere, e.g. in [5]. Here one needs an
initial estimate of the Twiss parameters that are going to
be measured, and so build a well conditioned matrix of the
coefficients in Eq. (3) according to the given constraint.
1 Often in this paper we will use the normalised emittance definition εN =
ε γrel where γrel is the relativistic factor.
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Table 1: Twiss Parameters Fitted from the Measurements
Shown in Fig. 1

βx [m] αx εNx [ µm]
Standard 5.0 ± 0.2 −3.5 ± 0.1 155 ± 3
Constant size 4.0 ± 0.2 −2.6 ± 0.1 146 ± 3

At CTF3 we use the MATLAB fsolve solver [6] for setting
up such a measurement. Figure 1 shows a comparison of
two measurement performed on the Drive Beam at CTF3.
The first one, in blue, has been obtained by varying only
one quadrupole, while three quadrupoles have been used for
the measurement in red. The second measurement, using
the Twiss parameters measured from the first one, was set
up trying to keep the beam size constant at the screen. The
fitted Twiss parameters are reported in Table 1. Note that
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Figure 1: Horizontal beam variance σxx measured at the
screen for different settings of quadrupole settings. Dashed
are the expected values from the fitted Twiss parameters.

the fitted Twiss parameters, while being not too far, are not
fully consistent. This is believed to be due to the Gaussian
fit that is applied to the measured profiles, which sometimes
can be far from being Gaussian as shown later in Fig. 5 (a).

TRANSVERSE MATCHING
In an ideal machine the beam is passing through the centre

of the quadrupoles, therefore the beam centroid should not
move while performing a quadrupole scan. In practice this is
not always the case, but the movement of the beam centroid
at the measurement location (xM,i) can be used to fit the
centroid phase-space coordinates (xR, x ′R) by inverting the
following system of equations:
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Moreover, starting from the Twiss parameters and assuming
Gaussian beams, one can represent the beam phase-space
distribution as an ellipse of equation:

εx = γx x2 + 2αx x x ′ + βx x ′2. (5)

At CTF3 the first recombination takes place into the Delay
Loop (DL): half of the beam is delayed, while the other half
bypass the DL. Both are then recombined in the following
transfer line. Figure 2 shows the ellipse representation in
phase-space of a typical well matched delayed beam, bypass
beam and relative factor two combined beam measured at
CTF3. The measured Twiss parameters and centroid coordi-
nate are reported in Table 2.

-4 -3 -2 -1 0 1 2

y [mm]

-0.4

-0.2

0

0.2

0.4

y
' [

m
ra

d
]

Figure 2: Phase-space representation of a bypass (red), de-
layed (blue) and combined (green) beam measured at CTF3.
Dashed are the expected nominal ellipses.

DISPERSION EFFECT
One of the effects that can spoil the accuracy of a

quadrupole scan is the presence of unwanted dispersion in
conjunction with high beam energy spread. In the simplest
case of a beam line without bending magnets and assuming
only linear dispersion, Eq. (2) can be rewritten as:

σ2
M = βM ε + D2
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2
p (6)
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where D and D′ are the dispersion coordinates, while σp

is the beam r.m.s. energy spread. Note that from Eq. (7)
there is no way with a simple quadrupole scan to disentangle
the additional dispersion contribution from the “betatronic”
one. On the other hand the presence of dispersion makes the
beam centroid position change if the beam energy is varied.
Each equation of the system in Eq. (4) can then be rewritten
as:

xM =
[
A B

] (
xR + Dx,R ∆p/p0
x ′R + D′x,R ∆p/p0

)
R

(8)

where the Dx,R and D′x,R are the dispersion coordinates at
the reconstruction location and ∆p/p0 the applied relative
beam energy variation. During a quadrupole scan on can
vary the beam energy as well, and collect all beam centroid
positions. From this data one can fit the initial centroid
coordinates and dispersion inverting Eq. (8), and use this
information to subtract the dispersion contribution from
Eq. (7).
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Table 2: Beam Centroid and Twiss Parameters Related to Fig. 2

y [mm] y′ [mrad] βy [m] αy εNy [ µm]
Bypass beam −1.12 ± 0.06 0.03 ± 0.01 8.56 ± 0.48 −0.25 ± 0.04 142 ± 4
Delayed beam −1.24 ± 0.06 −0.04 ± 0.01 7.17 ± 0.53 −0.43 ± 0.05 119 ± 4
Combined beam −1.21 ± 0.06 0.04 ± 0.01 7.71 ± 0.21 −0.32 ± 0.02 152 ± 2
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Figure 3: Horizontal beam position x measured at a screen
as a function of quadrupole current IQ. The colour code is
the beam energy variation with respect to nominal.
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Figure 4: Correspondence between a phase-space profile
integral line (dashed line) at the reconstruction location (a)
and at the measurement location (b). The red arrows identify
the distance of the integral line from the origin of the axes
at the two locations.

Figure 3 shows an example of such a measurement per-
formed at CTF3. From this data we could fit an incoming
dispersion of Dx = −141± 16 mm and D′x = −16± 1 mrad.
On the quadrupole scan data, by including this contribution
the measured beam emittance goes from εx = 171 ± 5 to
128 ± 17, i.e. a reduction of about 25%.

TRANSVERSE PHASE-SPACE
TOMOGRAPHY

The idea of applying tomographic techniques for phase
space reconstruction has been introduced in [7] and exten-
sively studied in the literature, e.g. in [3, 8]. The concept is
to use the whole beam profile measured, and not only the
fitted beam variance. The mathematical background is well
explained with the help of Fig. 4 from [8]. Each point of a
measured beam profile can be seen as a line integral over
the vertical-dashed line in Fig. 4 (b). This is equal to the
integral along the dashed line in Fig. 4 (a) representing the
phase space at the reconstruction location. Assuming the
linear transformation in Eq. (1), the angle θ and the relation
between the distances ρ and ρ′ can be found to be:

tan(θ) =
B
A

ρ′ = ρ
√

A2 + B2. (9)

In practice each measured profile is a compressed projected
distribution of the beam phase space taken at different angles.
By carefully decompressing the profiles one can therefore
use them for reconstructing the actual beam phase-space
distribution. At CTF3 this is done by using the inverse
Radon transformation provided by MATLAB [9].

Figure 5 shows a typical measurement performed at CTF3
with an heavily non-Gaussian beam. Note the non-Gaussian
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Figure 5: Measured horizontal beam profiles (a) used for the
transverse phase-space tomographic reconstruction in (b).
Dashed is the phase-space reconstruction using the simpler
quadrupole scan technique.

profiles measured at the screen location in 5 (a), which are
well exploited by the tomographic reconstruction but obvi-
ously ignored by the simple quadrupole scan reconstruction.

CONCLUSIONS
At CTF3 the standard quadrupole scan technique has been

exploited in all its aspect and potentiality. The possibility
of fitting the incoming beam centroid coordinate, verifying
the presence or the absence of incoming dispersion, and
performing tomographic reconstruction of the phase-space
have been essential aids for verifying the optics matching be-
tween the different paths in the Drive Beam Recombination
Complex, as well as to achieve many of the results presented
in [10].
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