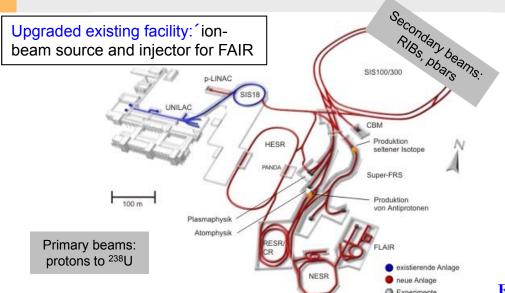
High Brilliance uranium beams for FAIR Winfried Barth, GSI&HIM

A. Adonin², Ch. E. Düllmann¹,²,³, M. Heilmann², R. Hollinger², E. Jäger², O. Kester², J. Khuyagbaatar¹,², J. Krier², E. Plechov², P. Scharrer¹,²,³, W. Vinzenz², H. Vormann², A. Yakushev¹,², S. Yaramyshev²

- ¹ Helmholtz Institute Mainz, Germany
- ² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- ³ Johannes Gutenberg-Universität Mainz, Germany
- 1. Introduction
- 2. High intensity proton beam measurements at GSI-UNILAC
- 3. Pushing the limits for uranium beam operation
- 4. Heavy ion stripping
- 5. beam brilliance analysis
- 6. Summary&Outlook

The GSI <u>UNI</u>versal <u>Linear AC</u>celerator


Single Gap Resonators (1975)

Facility for Antiproton and IonResearch

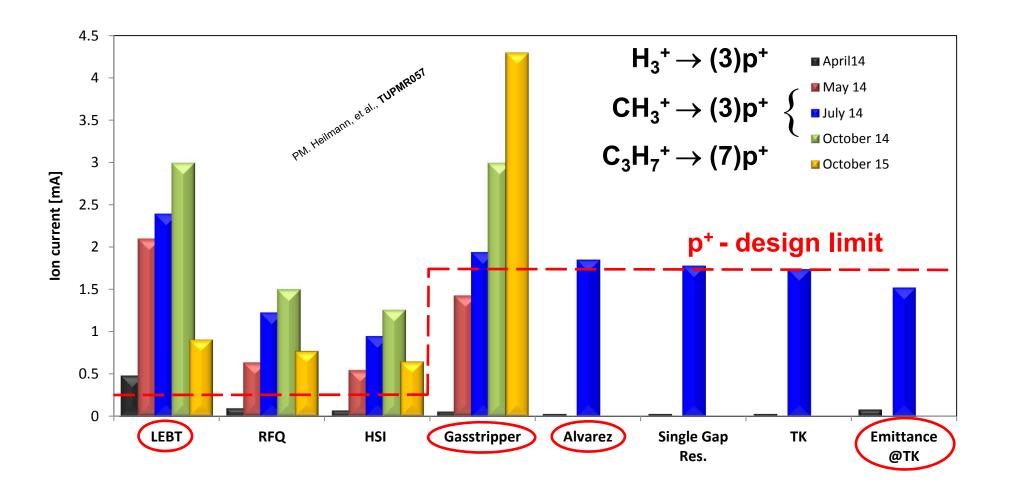
Ring/Device Beam Energy Intensity SIS 100 (100Tm) $4x10^{13}$ protons 30 GeV 238_[] 1 GeV/u 5x10¹¹ (intensity factor 100 over present) SIS 300 (300Tm) ⁴⁰Ar 45 GeV/u 2x109 238_[] 34 GeV/u 2x10¹⁰ CR/RESR/NESR ion and antiproton storage and experiment rings ~1011 **HESR** antiprotons 14 GeV

Accelerator Components & Key Characteristics

New future facility: ion and anti-matter beams of highest intensities and high energies

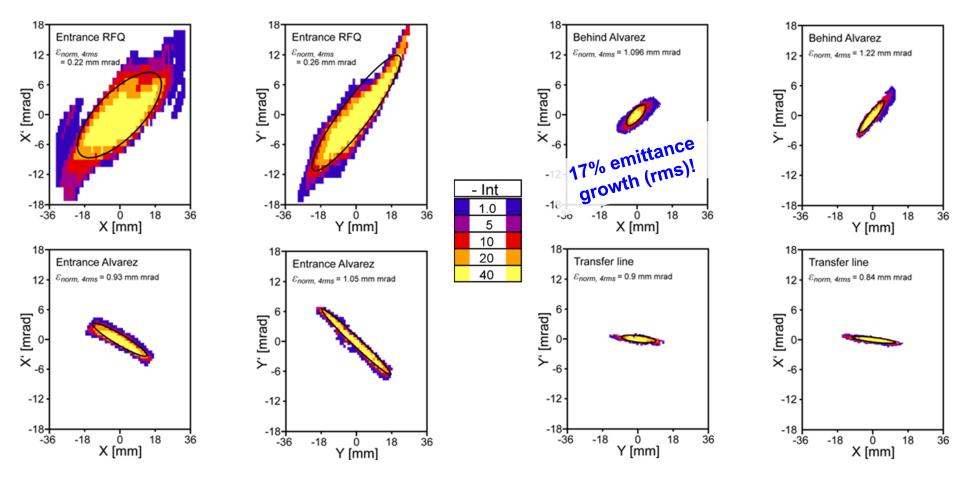
FAIR-design uranium beam parameters at the UNILAC

	HSI entrance	HSI <u>exit</u>	Alvarez entrance	SIS 18 injection
Ion species	²³⁸ U ⁴⁺	238U⁴+	²³⁸ U ²⁸⁺	238 _U 28+
Elect. Current [mA]	25	18	15	15.0
Part./100μs pulse	3.9·10 ¹²	2.8·10 ¹²	3.3·10 ¹¹	3.3·10 ¹¹
Energy [MeV/u]	0.0022	1.4	1.4	11.4
$\Delta W/W$	-	4·10 ⁻³	±1·10 ⁻²	±2·10 ⁻³
$\epsilon_{normx} \; [mm \; \underline{mrad}]$	0.3	0.5	0.75	1.0
$\epsilon_{norm,y} \; [mm \; mrad]$	0.3	0.5	0.75	2.5

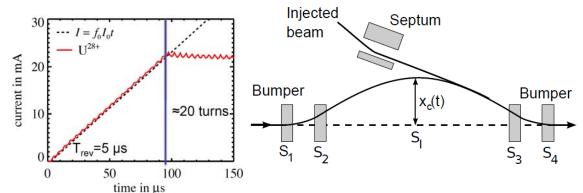


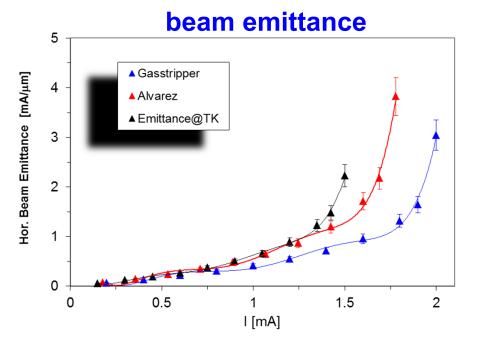
<10⁹

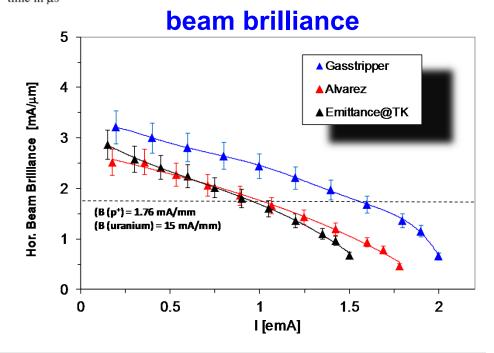
Super-FRS rare isotope beams 1 GeV/u


High intensity proton beam measurements at GSI-UNILAC

Front to end emittance measurements with a high current proton beam



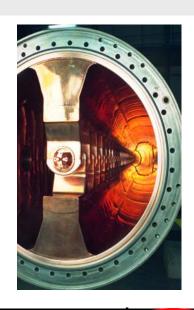

High Current Proton Beam Analysis



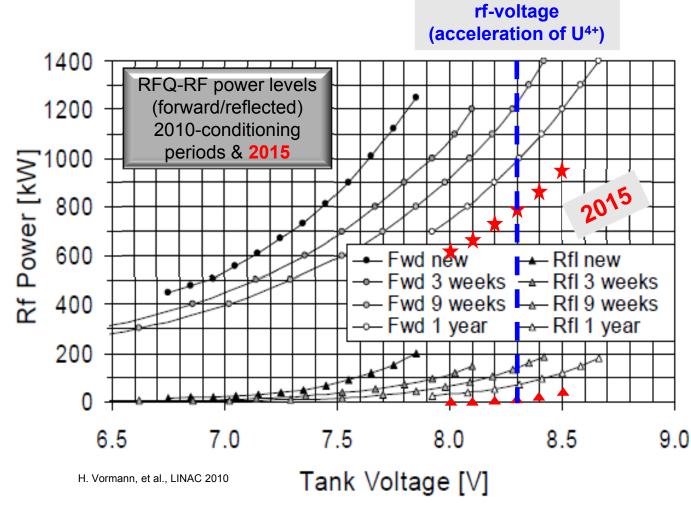
Horizontal multi-turn injection into SIS18

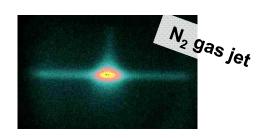
- Beams are stacked until machine acceptance is reached
- Loss should be as low as possible due to activation, damage, vacuum

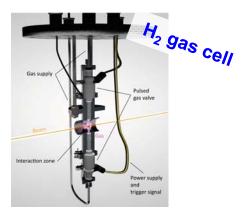
Pushing the limits for uranium beam operation

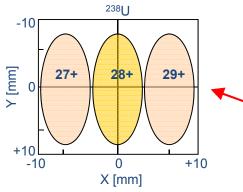


- Ion Source: Applying a multi-aperture extraction system at the VARIS ion source → Increased U⁴+-intensity and improved primary beam brilliance
- Low Energy Beam Transport: Improved LEBT-performance and RFQ-Matching using high brilliance uranium beam from the VARIS \rightarrow 70% RFQ-Transmission (I_{out} = 9.7 emA)
- RFQ: RF optimization by adjusting plunger positions at the HSI RFQ tank and extensive rfconditioning → Reduction of forwarded rf-power, yielding for reliable high-current uranium beam operation.
- MEBT: Optimizing transport between RFQ and IH DTL by increasing the transverse and longitudinal focusing strength (3%) → Reduction of beam loss, stable high current operation
- 1.4 MeV/u-Transport Line: Adapting the quadrupole channel (matching the gas stripper) → 90% beam transmission, U⁴⁺ beam current of 6.6 emA available for heavy ion stripping.

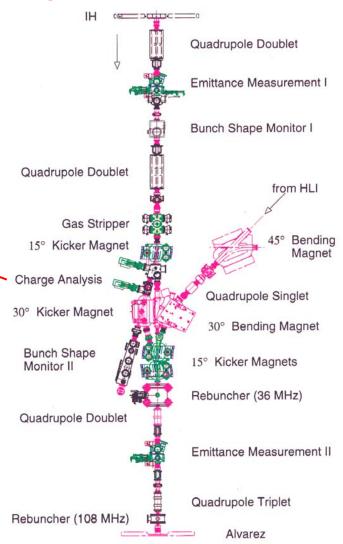

HSI-Radio Frequency Quadrupole RF-Optimization


Electrode voltage / kV	155
Av. aperture radius / cm	0.6
Electrode width / cm	0.846
Maximum field / kV/cm	312.0
Modulation	1.012 - 1.93
Min. transv. phase advance / rad	0.555
Synch. Phase, degrees	-90°28°
Min. aperture radius, cm	0.410
Norm. transv. acceptance / μm	0.856
Number of cells with modulation	394
Length of electrodes, cm	921.74





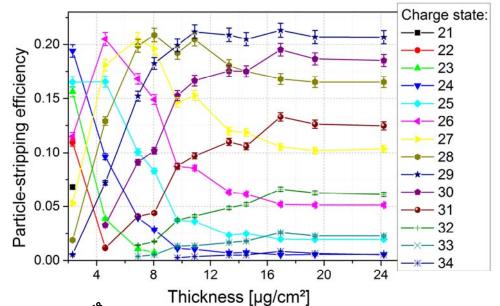
Heavy Ion Stripping

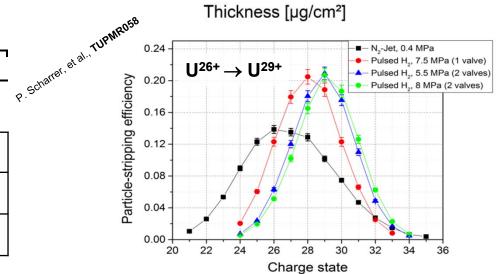


- For high intensive heavy ion beams → Increase of the so called "ionic charge" by collision with matter (= STRIPPING, Removal of electrons) → Reduction of the necessary effective potential for the acceleration of ions.
- Collision of heavy ions with matter → e⁻capture (~ Z⁵) and e⁻-loss (~ Z⁴)
- (Pulsed) H2 gas stripping cell with target thickness > 10 μg/cm²

gas stripper section

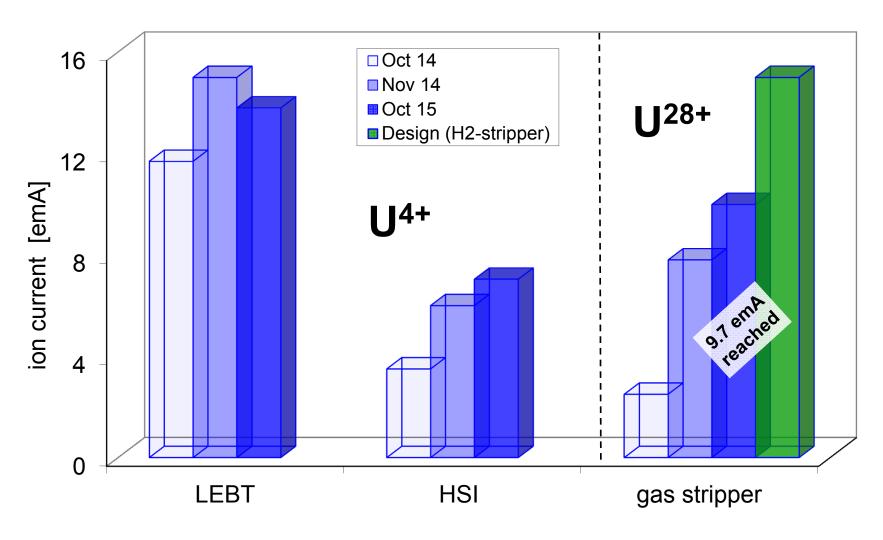
Particle Stripping Efficiency

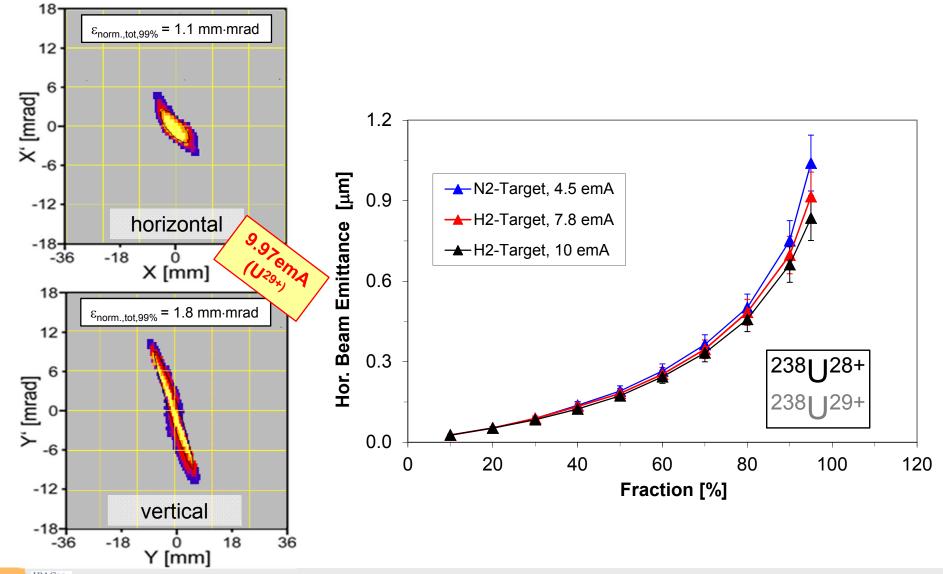



Beam Parameters:

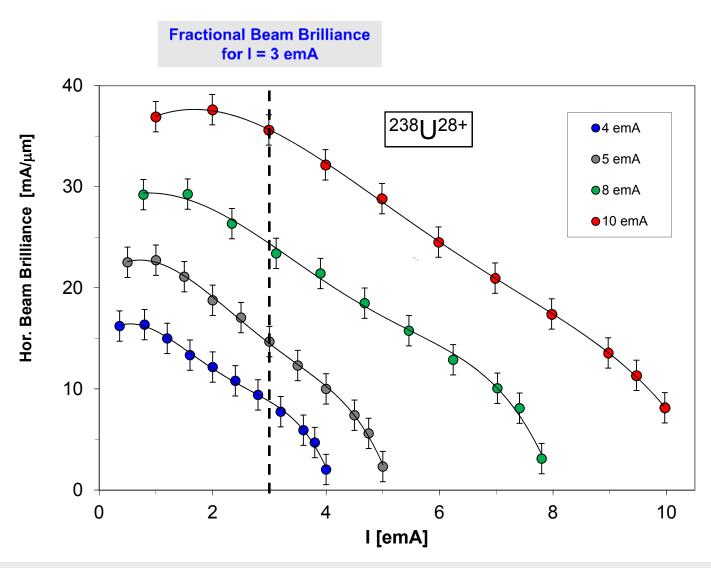
	N ₂ -gas jet [6]	H ₂ - gas cell
Stripper-back-pressure	0.4 MPa	5.5 MPa (pulsed)
U ⁴⁺ -current (HSI)	6.0 emA	6.6 emA
Stripping charge state	28+	29+
Max.uranium-current	4.5 emA	9.97 emA
Stripping efficiency	12.7±0.5%	21.0±0.8%
Energy loss	14±5 keV/u	27±5 keV/u
ϵ_x (90%, tot.) norm.	0.76 μm	0.66 μm
ε_{v} (90%, tot.) norm.	0.84 μm	1.15 μm
Hor. brilliance (90%)	5.32 mA/μm	13.60 mA/μm

Beam Energy Loss:

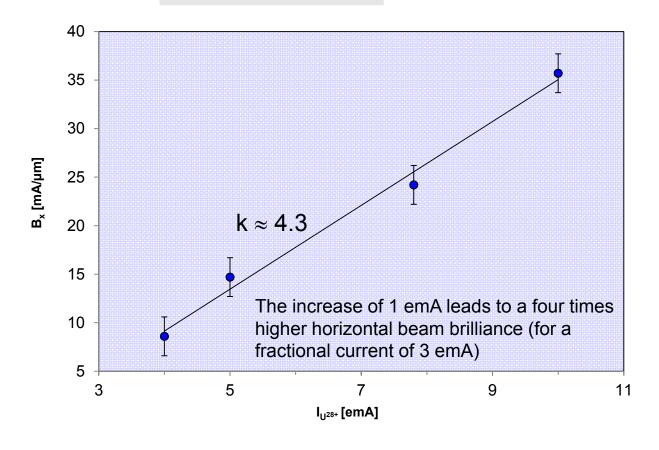

U ²⁸⁺	N ₂ -jet (max.)	14±5 keV/u
U ²⁸⁺	Pulsed H ₂ -stripper cell (1 valve, 7.5 MPa)	17±5 keV/u
U ²⁹⁺	Pulsed H ₂ -stripper cell (2 valves, 5.5 MPa)	27 ±5 keV/u


High Current Uranium Beam Transmission

High current uranium beam emittance measurements at 1.4 MeV/u



Horizontal Beam Brilliance Analysis



Horizontal Beam Brilliance Analysis

Fractional Beam Brilliance for I = 3 emA

U²⁸⁺-beam brilliance at SIS18 injection

- Determination of U²⁸⁺-beam brilliance at SIS18 injection:
 - High current U²⁸⁺-beam brilliance measurement at 1.4 MeV/u
 - Front-to-end high-current proton beam measurements (up to 11.4 MeV/u)
- UNILAC parameters scale with the mass-to-charge ratio m/q:

$$\frac{m}{q}(scal) = \frac{\frac{m}{q}(U^{28+})}{\frac{m}{q}(p^{+})} = \frac{8.5}{1}$$

• Proton beam transmission TM_{fin} (stripper until) SIS18-injection:

$$TM_{fin}(p^+) = 75\%$$

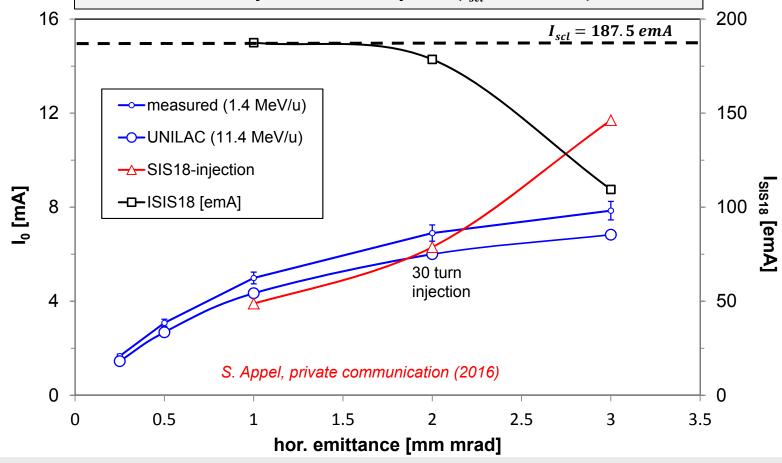
• Proton rms emittance growth $EW_{fin}(p^+)$; considering particle loss:

$$EW_{fin}(p^+) = -3\%$$

Resulting proton beam brilliance loss BL(p⁺):

$$BL(p^+) = 100\% - \frac{TM_{fin}(p^+)}{100\% + EW_{fin}(p^+)} \cdot 100\% \approx 23\%$$

• Assuming brilliance loss scales with ion current density \rightarrow brilliance loss $BL(U^{28+})$ for the measured maximum uranium beam current (for charge state 28+) of 9.70 emA:


$$BL(U^{28+}) = \frac{9.70emA}{2emA \cdot \frac{m}{q}(scal)} \cdot BL(p^{+}) = 0.6 \cdot 23\% \approx 15\%.$$

Loss free (high current) U²⁸⁺-beam injection into the GSI-synchrotron SIS18

- UNILAC beam measurement at 1.4 MeV/u
- Reduced UNILAC beam brilliance at SIS18 injection
- SIS18-beam intensity to achieve space charge limit (2•10¹¹ part. per pulse)
- SIS18-beam intensity after multi turn injection ($I_{scl} = 187.5 emA$)

Summary and Outlook

- Loss-free injection into the SIS18 is a necessary condition, especially for operation with high intensity (medium charge) heavy ion beams.
- By horizontal collimation of the UNILAC beam emittance in the transfer line, the SIS18 space charge limit could be reached at significantly lower peak currents, but accordingly longer injection times (55 μ s \rightarrow 138 μ s)
- The conducted high current proton beam emittance measurement throughout the UNILAC shows a loss of horizontal beam brilliance of 23% → the high current uranium beam brilliance (measured at 1.4 MeV/u) grows until SIS18 injection accordingly.
- 30 turns have to be injected in the SIS 18 to fill up to the SCL (Design: 12 turns; I_{unilac} = 15 emA)
- For further confirmation, it is evident to perform uranium measurements at full UNILAC energy.
- Through horizontal collimation (≤2 mm·mrad), the number of measured uranium particles in this phase space area could be sufficient to fill the SIS18 up to the space charge limit (2•10¹¹ part. per pulse).

Thank You for Your Attention!