Application of Differential Evolution Algorithm in Future Circular Colliders

Yuan Zhang(zhangy@ihep.ac.cn), IHEP, Beijing Demin Zhou, KEK, Ibaraki, Japan

Presented at IPAC'16, May 8-13, 2016, BEXCO, Busan Korea

Outline

- Introduction
- Differential Evolution Algorithm
- Application in CEPC & SuperKEKB
- Summary

Multi-objective genetic algorithm (MOGA)

- Application in storage ring based light source is very popular and successful
 - APS/DLS, ELEGANT, M. Borland, in 48th ICFA Beam Dynamics Workshop on Future Light Sources
 - NSLSII, L. Yang, Y. Li, W. Guo and S. Krinsky, PRST-AB, 14, 054001 (2011)
 - SLS, BMAD, M. Ehrlichman , arXiv: 1603.02459
 - HEPS, Accelerator Toolbox, Y. Jiao and G. Xu, in this proceeding

•

Different Algorithm

- Particle Swarm, SPEAR3, X. Huang, J. Safranek, Nucl. Instr. Meth. In Phys. Research A. 757, 48, 2014
- Differential Evolution, J. Qiang et al., IPAC'13
- Downhill Simplex, SuperKEKB, FCC, K. Oide et al.
- •

Excitation

• K. Oide, "A design of beam optics for FCC-ee", Sep. 2015 @IHEP

* The dynamic aperture was optimized with element-by-element radiation damping, automatic tapering, and crab waist.

Why we did the job?

- We need to optimize the DA of CEPC
- We want to try the direct DA optimization in collider, just as the community has done in light source
- Different optimization algorithm is worth to be used
- SAD(http://acc-physics.kek.jp/sad/) is used for the DA determination. It is a parallel code, but the scalability is not very good. A MPI-based parallel code to call SAD will be much more efficient.

Differential Evolution Algorithm (single objective)

- The "DE community" has been growing since the early DE years of 1994 1996
- DE is a very simple population based, stochastic function minimizer which is very powerful at the same time.
- There are a few strategies, we choose 'rand-to-best'. Attempts a balance between robustness and fast convergence.

 $v(i,j) = \begin{cases} x(i,j) + F \times [x(b,j) - x(i,j)] + F \times [x(r1,j) - x(r2,j)], & If rand(j) < CR \\ x(i,j), & Otherwise \end{cases}$

 Different problems often require different settings for NP, F and CR

Parallel Computation

CEPC (PreCDR)

- Beam energy: 120GeV
- Circumference: 54 km
- SR power: 51.7 MW/beam
- 8*arcs, 2*lps
- Luminosity: 2e34/IP
- Emittance X/Y: 6.12/0.018 nmrad
- $\beta_x^* / \beta_y^* = 0.8 \text{m} / 1.2 \text{mm}$
- FODO cell: 47.2m, 60/60 degrees
- Damping time: 78/78/39 turns
- Dynamic Aperture: $20\sigma_x \times 40\sigma_y \times 0.02$

Case of CEPC

- Before optimization:
 One SF/SD family in arc
- Initial IR optimization (by Y. Wang, Mar 2015)
- $\beta_x^* / \beta_y^* = 0.8 \text{m}/3 \text{mm}$
- Without pretzel scheme
- No solenoid and compensation

CEPC: Dynamic Aperture Optimization

- DA Objective: $\frac{x^2}{20^2} + \frac{z^2}{16^2} = 1$
 - z for energy deviation in unit of σ_p
 - x for transverse amplitude in unit of σ
- Variables: 240 sextupole familiy in arc
 - Sextupoles interleaved with -/ map is one pair
- Options:
 - DAPWIDTH=15
 - Turns = 100
 - Synchrotron oscillation on

CEPC: Dynamic Aperture Optimization (2)

СΓ

Multi-objective Optimization

- Most problems in nature have several (possibly conflicting) objectives to be satisfied.
- Many of these problems are frequently treated as single-objective optimization problems by transforming all but one objective into constraints.
- The term *optimize* means finding such a solution which would give the values of all the objective functions acceptable to the decision maker.

Giuseppe Narzisi, "Multi-Objective Optimization", 2008

MODE: Multi-Objective optimization by Differential Evolution

The parallel algorithm is referencing to J. Qiang(IPAC'13)

- 1. Initialize the population of parameter vectors
- 2. Generate the offspring population using the above differential evolution algorithm
- 3. Find the non-dominated population, which are treated as the best solutions in DE to generate offspring
- 4. Sorting all the population, select the best NP solution as the parents
- 5. Return to step 2, if stopping condition not met

Multi-Objective Optimization of CEPC

- Objectives:
 - $\nu_x \in (0.05, 0.31), \nu_y \in (0.10, 0.31),$ for $\delta_p \in (-0.02, 0.02),$ with $\nu_{x0} = 0.08, \nu_{y0} = 0.12$
 - $\frac{x^2}{20^2} + \frac{z^2}{16^2} = 1$, for z=Range[-15,15,1]
 - Options: DAPWIDTH=30, turns=200

Multi-Objective Optimization of CEPC

The dynamic aperture required in X-Y space not satisfying

x [σ_x]

Dynamic Aperture with Damping

Synchrotron oscillation

Synchrotron oscillation Radiation damping

Sawtooth effect without FFS

Orbit sawtooth amplitude 0.6mm

Courtesy of Huiping Geng@IHEP

Dynamic Aperture with Damping & Fluctuation

Y. Ohnishi, "Optics Issues", 18th KEKB Review, March 3-5, 2014 dynamic aperture is a serious issue

Transverse aperture is reduced significantly.

DA Optimization of LER

- Objectives:
 - $v_x \in (0.53, 0.66), v_y \in (0.55, 0.66),$ for $\delta_p \in (-0.019, 0.019)$ • $\frac{x^2}{50^2} + \frac{z^2}{26^2} = 1$, for z=Range[-24, 24, 3], $\epsilon_{x,0} = 1.89$ nmrad, $\delta_{p,0} = 7.7e-4$
- Variables: 68
 - 2 Octupoles
 - 54 sextupole pairs
 - 12 skew sextupole pairs

Momentum aperture is increased.

LER: beam-beam and lattice nonlinearity

• Skew-sext resonance reduce the beam-beam performance

D. Zhou, "Beam Dynamics Issuses in SuperKEKB", The 20th KEKB Accelerator Review Committee, Feb, 2015.

D. Zhou and et al, "Interplay of Beam-Beam Lattice Nonlinearity and Space Charge Effects in the SuperKEKB Collider", IPAC'15

LER: beam-beam and lattice nonlinearity

- Skew-sext resonance reduce the beam-beam performance

D. Zhou, "Beam Dynamics Issuses in SuperKEKB", The 20th KEKB Accelerator Review Committee, Feb, 2015.

D. Zhou and et al, "Interplay of Beam-Beam Lattice Nonlinearity and Space Charge Effects in the SuperKEKB Collider", IPAC'15

LER: beam-beam and lattice nonlinearity

- Skew-sext resonance reduce the beam-beam performance
- Skew-sext map cause loss in DA and lifetime

D. Zhou, "Beam Dynamics Issuses in SuperKEKB", The 20th KEKB Accelerator Review Committee, Feb, 2015.

D. Zhou and et al, "Interplay of Beam-Beam Lattice Nonlinearity and Space Charge Effects in the SuperKEKB Collider", IPAC'15

Optimization of LER

- Objectives:
 - $v_x \in (0.53, 0.66), v_y \in (0.55, 0.66),$
 - $\frac{x^2}{50^2} + \frac{z^2}{26^2} = 1$, for z=Range[-24,24,4],
 - Suppression of skew sextupole resonance:
 - $\frac{\langle y \rangle}{\sigma_y}$ for a particle with initial coordinate (5 σ_x ,0,0,0,0,0)
 - $\frac{|y-\langle y\rangle|}{\sigma_y}$ for a particle with initial coordinate (5 σ_x ,0,0,0,0,0)
- Variables: 80
 - 2 Octupoles
 - 54 sextupole pairs
 - 24 skew sextupole(symmetry of skew sextupole pair is broken)

Optimization of LER (2)

Difference resonance

Optimization of LER (3)

Suppression of skew sextupole resonance

Speed-up Method

- Brute-force dynamic aperture tracking is very time consuming
- The objective is first eased, for example only track 100 turns instead of 1000 turns.
- Some constraints must be satisfied and may be much faster. Referencing to Ehrilichman's work[arXiv: 1603.02459], the multiobjectives are classified into two kinds. The time consuming cost function be calculated only when the necessary constraints (or objective) be satisfied.

Summary

- The multi-objective optimization has been used in light source machine (not only storage ring based) for a few years.
- We did a few multi-objective optimization for future colliders. It shows it could help us.
- The MODE is just a tool, no physics. Physics exist in the definition of objective function. We should continue to find smart objective functions to save time.