
BAYESIAN OPTIMIZATION OF FEL PERFORMANCE AT LCLS∗

M. McIntire, T. Cope, D. Ratner, SLAC, Menlo Park, CA 94025, USA

S. Ermon, Stanford University, Stanford, CA 94305, USA

Abstract

The LCLS free-electron laser at SLAC is tuned via a huge

number of parameters such as energy and magnet settings.

Much of this tuning, including quadrupole magnet settings,

is typically done by hand by the LCLS operators. In this pa-

per we introduce an automated tuning system using Bayesian

optimization, and describe its application to the optimization

of noisy objectives such as FEL performance. We demon-

strate with preliminary results from our implementation at

LCLS that this system can improve both the speed of tuning

procedures as well as the quality of the resulting solution.

INTRODUCTION

In order to reduce its daunting operational costs and in-

crease the availability of the machine for experiments, the

LCLS free-electron laser (FEL) [1] is currently undergoing

a broad effort to automate and streamline its various proce-

dures. One target for automation is the tuning of quadrupole

magnets, which currently requires the attention of an oper-

ator and is extremely time consuming. Machine drift over

time and noisiness of the physical processes leads to a diffi-

cult optimization problem that must be addressed regularly

in order to keep the FEL tuned properly. Development of ad-

vanced controls is a high priority for accelerators worldwide

(see e.g. [2–6]).

Recently DESY has developed the Ocelot tuning frame-

work [7] which facilitates general optimization of machine

parameters. Initial tests of Ocelot to control quads at LCLS

with e.g. Nelder-Mead optimization [8] have been promis-

ing. However, such methods have various pitfalls in our

setting. The Nelder-Mead algorithm, for example, is unable

to backtrack and cannot deal effectively with the substantial

noisiness of the FEL performance feedback. This often re-

sults in improper convergence and can require e.g. several

restarts of the optimization procedure, which extends tuning

time and may not improve performance.

Another drawback of common optimization algorithms is

that they are relatively incapable of incorporating physical

models and prior knowledge. Ideally, we would like to be

able to guide the optimization process with our knowledge

about what regions are likely to be promising or how noisy

the signal is. In this paper we address this need for flexibility

and robustness to noise by introducing the Gaussian process

as a highly flexible and powerful model. We then describe

Bayesian optimization, which uses this Gaussian process

model to optimize efficiently and robustly. We also describe

the implementation of this Bayesian optimization framework

for FEL performance tuning at LCLS and present the pre-

∗ Work is supported by Department of Energy Contract No. DE-AC02-

76SF00515.

liminary results of our testing of this and other optimization

methods.

GAUSSIAN PROCESSES

Gaussian processes (GPs) provide us with a powerful

method of performing inference on a probability distribu-

tion over functions. Formally, a GP is a (possibly infinite)

set of random variables Y with the property that every finite

set of variables y1, · · · , yn ∈ Y has a multivariate normal

distribution. In Gaussian process regression, these random

variables represent the dependent variable at corresponding

locations in parameter space. For example, suppose y1 and

y2 are random variables corresponding to output at locations

x1, x2 in parameter space. Then the distributions of y1 and

y2, as well as their joint distribution, are all normal. Infor-

mally, we might expect that if x1 and x2 are near each other

in parameter space, then y1 and y2 might strongly covary;

we will soon make this precise.

A GP prior is defined entirely in terms of its prior mean

function and its covariance function. If X is our parameter

space, the prior mean function is a function f0 : X → R.

The prior mean is often taken to be zero for computational

convenience but can be an arbitrary function, though as is

the case in general for Bayesian statistics, a misspecified

prior can be harmful. The covariance (or kernel) function

K : X × X → R is essentially a difference measure on the

parameter space. The covariance function has a dramatic

effect on the GP posterior that results from inference over

training data.

The key to GP regression lies in this process of training

the GP by doing inference over training data. Given training

data X with output y, we can evaluate the GP posterior at

test points X∗ to obtain the resulting multivariate normal

distribution; the mean of this distribution is the GP posterior

mean at the test points, which is the output for regression.

We additionally have the covariance for this distribution,

providing not only the uncertainties for individual regression

outputs but the full joint covariance for the outputs.

Explicitly, let KX = K (X, X ) be the Gram matrix of the

training data, i.e. the kernel function applied to each pair

of points in X . We assume that the observed values y are

generated from an underlying ‘true’ function values f with

normally distributed noise, i.e. y = f+ǫ with ǫ ∼ N (0, σ2I).

Then we can (as shown in e.g. [9]) write the posterior mean

for function values f∗ at X∗ as

f∗ |X∗, X, y ∼ N (K (X∗, X )[KX + σ
2I]−1y,

K (X∗, X∗) − K (X∗, X )[KX + σ
2I]−1K (X, X∗) . (1)

Training the GP therefore requires inversion of a matrix of

size n if we are given n training points. This can cause a

WEPOW055 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

2972C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T32 Online Modelling and Software Tools



scaling problem for larger data sets; fortunately there is an

extensive literature on sparse GPs and methods of approxima-

tion for the full GP posterior, e.g. [10–16]. For our purposes,

using a sparse GP is necessary. We use the sparse online

GP of [10], since the iterative update scheme introduced

therein is particularly well-suited to the iterative structure

of Bayesian optimization. See [17] for a general, unifying

discussion of sparse GP approaches, and [9] for a thorough

introduction to GPs and GP regression.

BAYESIAN OPTIMIZATION

Suppose we are given an objective function g : X →

R mapping the parameter space X to a variable that we

wish to maximize. In general optimization problems we

are allowed to query g at whatever points we wish in order

to find a maximum. In motivating Bayesian optimization,

we assume that g is expensive to evaluate, e.g. perhaps

evaluation requires adjusting machine settings and waiting

for the changes to take effect. In this case, spending extra

time on computation may be worthwhile if it reduces the

number of function evaluations we must make.

Bayesian optimization addresses this trade-off by fully

utilizing the observed data to decide where to evaluate g at

each step. By maintaining a probabilistic model of the data

as e.g. a Gaussian process, we can search parameter space

for promising regions to explore via the GP rather than by

querying g itself. This exploration is guided by an acquisi-

tion function α : X → R. Common acquisition functions

include e.g. the probability of improvement and the expected

improvement [18] at the sampled point. The expected im-

provement in particular has been shown to perform well in

most settings, and has proven convergence properties [19].

Thanks to the simplicity of GPs, we can find an analytic

form for the expected improvement at a point x ∈ X. We let

µ : X → R represent the GP posterior mean function, and

denoting all observed points as X we let

y
∗
= max

xobs ∈X
µ(xobs ) .

This definition of y∗ seems convoluted at first glance, but is

necessary due to the noise in our observations. Defining y
∗

as simply the maximum observation, or even µ evaluated at

the location of the maximum observation, fails to account for

the possibility that the maximum observation was maximal

due to noise.

We then define the improvement at x as

I (x) = max(0, µ(x) − y
∗) .

The expected value of I (x) can be computed relatively easily

given the normal distribution of the GP posterior at x. Define

Z =
µ(x) − y

∗

σ(x)
,

and we then have

EI(x) ≡ E[I (x)] = σ(x)[ZΦ(Z ) + φ(Z )] , (2)

Algorithm 1 Bayesian optimization

1: while Not converged do

2: Compute xt+1 = arg maxx(α(x)).

3: Query objective function at xt+1 to get yt+1.

4:

5: Add (xt+1, yt+1) to the model.

6: t = t + 1

7: end while

where Φ and φ respectively denote the CDF and PDF of the

standard normal distribution [18].

With an acquisition function defined (in this case, α = EI),

the Bayesian optimization procedure becomes straightfor-

ward. Pseudocode is given in Figure 1; in iteration t, a

new point xt+1 is computed by maximizing the acquisition

function over the parameter space. We then query the ob-

jective function at xt+1, and incorporate the new informa-

tion (xt+1, yt+1) into the model (in our case, this means

updating the GP with additional training data). This can be

repeated for a given number of iterations or until some con-

vergence criterion is met. For a more in-depth introduction

to Bayesian optimization, see [20].

Our system for Bayesian optimization uses a variant of

the common squared exponential kernel for its GP model.

The squared exponential kernel Ke is defined as

Ke (x1, x2) = θ21 exp
(

−
‖x1 − x2‖

2

2θ2
2

)

.

Here θ1 and θ2 are hyperparameters that influence the covari-

ance function. The role of θ1 as a scaling factor is relatively

clear, while θ2 is a length-scale parameter that effectively

determines how far points can be from each other before

they become uncorrelated; see [9] for more discussion. Our

covariance function K is of the form

K (x1, x2) = θ2 exp
(

−
1

2
(x1 − x2)⊤Λ−1(x1 − x2)

)

, (3)

where Λ is a diagonal matrix containing (squared) length-

scale parameters for each dimension of the data. This allows

us more flexibility than the squared exponential kernel, since

we can separately handle the scaling of each dimension.

Choosing values for these hyperparameters is a critical

consideration. Many methods exist for hyperparameter se-

lection [9], including maximizing the probability of the data

given the model as well as cross-validation. However, these

approaches assume that the data is presented all at once, al-

lowing for computations on the entire data set. In our setting,

this is not the case; instead, data points arrive one at a time

and the performance of our optimizer is directly tied to how

well the model fits the data at each iteration.

A benefit of our choice of covariance function (3) is the

physical interpretability of its parameters. This allows us to

choose appropriate hyperparameters without observing a full

data set, instead using our knowledge of the physical system.

Our method for computing hyperparameters is described

more fully below.

Proceedings of IPAC2016, Busan, Korea WEPOW055

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T32 Online Modelling and Software Tools

ISBN 978-3-95450-147-2

2973 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



INTEGRATION INTO LCLS

At LCLS, the python software framework OCELOT [7]

has recently been integrated and used for online optimization

of various parameters on the accelerator (most notably the

X-ray pulse intensity gas detector) with the Nelder-Mead

algorithm [8] and other optimization algorithms. Using

OCELOT, we have developed a general optimization appli-

cation used to manage the interface between optimization al-

gorithms and the accelerator control system (see [21]). This

application has been expanded to allow testing of Bayesian

optimization using GPs which incorporates existing tools for

safe and streamlined development on a live machine. Integra-

tion into the existing UI interface enables fast development

of new optimization approaches using the general interface

for algorithm testing.

Our system for Bayesian optimization has been integrated

into the LCLS control system by creation of a basic getter

and setter wrapper for data requests between the optimizer

and LCLS controls. During an optimization run devices are

chosen, an optimization algorithm is selected, and initializa-

tion options are set from a PyQt UI. After the optimization

is complete, the data and the final GP model parameters

are archived for later analysis and initialization of future

optimizers.

The GP model used in Bayesian optimization requires

information about the machine to construct an initial model.

To address this requirement (which is unique to the Bayesian

optimization approach as compared to e.g. Nelder-Mead

optimization), the interface was built to allow for the use of

historical data to initialize a model, or to load a GP model

directly from a file. For early testing, we have also imple-

mented a method that initializes the GP model from the first

few iterations of a Nelder-Mead optimizer, which begins by

moving each device to explore the parameter space. This

method of initialization allows us to quickly run a GP scan

without first loading and formatting historical data to con-

struct a model, and generates fresh information about the

machine response.

On initialization of the GP we also must specify hyperpa-

rameters for its covariance function. These hyperparameters

are generated using historical data of typical device ranges

for a given beam energy. More specifically, data for each

device used in the optimization is collected and binned ac-

cording to beam energy. This data is then used to define

the length scale hyperparameters Λ in terms of the device

ranges, e.g. as 50% of the difference between the 90th and

10th percentile values of the device. These length scales

directly affect the spatial resolution of the GP model, which

we will demonstrate shortly.

In addition to the hyperparameter Λ, we must also specify

the noise variance σ2 and the coefficient θ from equations

(1) and (3) respectively. We can set these parameters directly

as functions of live measurements of the FEL beam jitter,

so that σ gives us an appropriate measure of the noisiness

of the feedback during optimization. The hyperparameter θ

also can be set as a function of beam jitter.

(a) (b)

(c) (d)

(e) (f)

Figure 1: Comparison between methods of optimization. (a) The

current method of hand-tuning quad settings requires several min-

utes of tunings quads one-by-one. (b) A Nelder-Mead optimization,

which explores initially and then narrows its focus. (c-f) A compar-

ison between Bayesian optimization using different length scales,

done consecutively and with the same machine settings. (c) and (e)

show quad settings and pulse energy over time using small length

scales, while (d) and (f) show the same using doubled length scales.

PRELIMINARY RESULTS

Initial tests have been conducted using Bayesian optimiza-

tion. First tests show that this method can achieve faster

optimization than hand tuning and other optimization meth-

ods (examples of which are shown in Figures 1a and 1b). The

results of Bayesian optimization appear to depend strongly

on the hyperparameters of the optimizer.

This importance is demonstrated in Fig. 1c and 1d, which

show quad settings from two optimization runs performed

back-to-back to minimize the effect of machine drift, using

the same initial settings. In Fig. 1d, the length scales from

the previous run were doubled, which leads to much faster

initial movement and gains as seen by the figures directly

below (1e and 1f), which show the pulse energy during the

optimization. However, these larger length scales inhibit the

fine-tuning ability of the optimizer.

We are still in the initial stages of testing our Bayesian

optimization system on the live machine, and are gather-

ing data to improve our understanding of hyperparameter

selection and model initialization before a fully automated

version is used in standard tuning procedures. Our findings

thus far leave us optimistic that substantial improvements

can be made over current optimization tools.

WEPOW055 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

2974C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T32 Online Modelling and Software Tools



REFERENCES

[1] P. Emma et al. First lasing and operation of an ångstrom-

wavelength free-electron laser. Nature Photonics, 4:641 –

647, 2010.

[2] R. Bartolini, M. Apollonio, and I. P. S. Martin. Multiobjective

genetic algorithm optimization of the beam dynamics in linac

drivers for free electron lasers. Phys. Rev. ST Accel. Beams,

15:030701, Mar 2012.

[3] Alicia Hofler, Bal ša Terzić, Matthew Kramer, Anton Zvezdin,

Vasiliy Morozov, Yves Roblin, Fanglei Lin, and Colin Jarvis.

Innovative applications of genetic algorithms to problems in

accelerator physics. Phys. Rev. ST Accel. Beams, 16:010101,

Jan 2013.

[4] Alexander Scheinker, Xiaoying Pang, and Larry Rybarcyk.

Model-independent particle accelerator tuning. Phys. Rev.

ST Accel. Beams, 16:102803, Oct 2013.

[5] Xiaobiao Huang, Jeff Corbett, James Safranek, and Juhao

Wu. An algorithm for online optimization of accelerators. Nu-

clear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 726:77 – 83, 2013.

[6] Sandra G. Biedron, Auralee Edelen, and Stephen Milton. Ad-

vanced controls for accelerators. In High-Brightness Sources

and Light-Driven Interactions, page EM9A.3. Optical Society

of America, 2016.

[7] I. Agapov, G. Geloni, S. Tomin, and I. Zagorodnov. Ocelot: A

software framework for synchrotron light source and {FEL}

studies. Nuclear Instruments and Methods in Physics Re-

search Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, 768:151 – 156, 2014.

[8] J. A. Nelder and R. Mead. A Simplex Method for Function

Minimization. The Computer Journal, 7(4):308–313, January

1965.

[9] Carl Edward Rasmussen and Christopher K. I. Williams.

Gaussian Processes for Machine Learning (Adaptive Compu-

tation and Machine Learning). The MIT Press, 2005.

[10] Lehel Csató. Gaussian Processes - Iterative Sparse Approxi-

mations. PhD thesis, Aston University, 2002.

[11] Lehel Csató and Manfred Opper. Sparse on-line Gaussian

processes. Neural Computation, 14(3):641–668, 2002.

[12] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian

processes using pseudo-inputs. In Advances in Neural Infor-

mation Processing Systems, pages 1257–1264. MIT press,

2006.

[13] Neil Lawrence, Matthias Seeger, and Ralf Herbrich. Fast

sparse Gaussian process methods: The informative vector

machine. In Advances in Neural Information Processing

Systems 15, pages 625–632. MIT Press, January 2003.

[14] James Hensman, Nicoló Fusi, and Neil D. Lawrence. Gaus-

sian processes for big data. In Proceedings of the Twenty-

Ninth Conference on Uncertainty in Artificial Intelligence,

2013.

[15] Michalis K. Titsias. Variational learning of inducing variables

in sparse Gaussian processes. In In Artificial Intelligence and

Statistics 12, pages 567–574, 2009.

[16] Matthias Seeger, Christopher K. I. Williams, and Neil D.

Lawrence. Fast forward selection to speed up sparse gaussian

process regression. In Workshop on AI and Statistics 9, 2003.

[17] Joaquin Quiñonero-Candela and Carl Edward Rasmussen.

A unifying view of sparse approximate Gaussian process

regression. Journal of Machine Learning Research, 6:1939–

1959, 2005.

[18] Donald R. Jones, Matthias Schonlau, and William J. Welch.

Efficient global optimization of expensive black-box func-

tions. J. of Global Optimization, 13(4):455–492, December

1998.

[19] Adam D. Bull. Convergence rates of efficient global opti-

mization algorithms. Journal of Machine Learning Research,

12:2879–2904, November 2011.

[20] Eric Brochu, Vlad M Cora, and Nando de Freitas. A tutorial

on bayesian optimization of expensive cost functions, with

application to active user modeling and hierarchical reinforce-

ment learning. eprint arXiv:1012.2599, arXiv.org, December

2010.

[21] S. Tomin, G. Geloni, I. Agapov, I. Zagorodnov, Ye. Fomin, Yu.

Krylov, A. Valintinov, W. Colocho, T. M. Cope, A. Egger, and

D. Ratner. Progress in automatic software-based optimization

of accelerator performance. In Proceedings of IPAC 2016.

Proceedings of IPAC2016, Busan, Korea WEPOW055

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T32 Online Modelling and Software Tools

ISBN 978-3-95450-147-2

2975 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


