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Abstract 

In recent years, the interest to radiation of moving 

charged particles in media with chiral properties is 

connected with relatively new and prospective method for 

diagnostics of biological objects which uses the 

Cherenkov radiation – Cherenkov luminescence imaging 

[1]. Optical activity (chirality, gyrotropy) is typical or 

biological matter and is caused by mirrorless structure of 

molecules. Contrary to such gyrotropic medium as 

magnetized ionospheric plasma, aforementioned media 

are isotropic. One distributed model describing the 

frequency dispersion of isotropic chiral media is Condon 

model. In this report, we continue the investigation 

performed in our previous paper [2] where we dealt with 

the field produced by uniformly moving charge in infinite 

chiral isotropic medium. Moreover, we perform 

generalization of early paper [3], where the problem with 

half-space was considered in the specific case of slow 

charge motion. We present typical radiation patterns in 

vacuum area and corresponding ellipses of polarization 

which allows determination of the chiral parameter of the 

medium.  

THEORY AND ANALYTICAL RESULTS 

Chiral isotropic medium can be described by the 

following symmetrized material relations [2]: 

=D E i H    ,      =B H i E            (1) 

connecting Fourier transforms (both 1-fold, as given by 

formula (1), and four-fold with respect to time and tree 

spatial coordinates) of field components. Condon model 

[4] dictates the following frequency dependence for   

and   ( 1  ): 
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where r  is resonant frequency, p  is a “plasma” 

frequency and 0  is a chirality parameter. Introducing 

“potentials” E  and E  [2], so that  
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one can obtain the following independent equations: 
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with n  , n     , Re 0 . Fundamental 

solutions of (4) are two circularly polarized plane waves,  

 

with vectors E
  and H

  rotating clockwise (right-hand 

polarization, “  ”) while vectors E
  and H

  rotating 

counterclockwise (left-hand polarization, “  ”) in the 

plane orthogonal to propagation direction. 

       Here we consider a point charge q  flying from 

vacuum into medium (2) with constant velocity V c  

(Fig. 1). Charge and current densities are: 

( ) ( ) ( )q x y z Vt     , zj e V .              (5) 

Using Fourier technique, we determined the field in both 

half spaces and then perform matching of tangential 

components for 0z  . On the basis of relation 
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and analogous one for E , we can formulate the 

problem with respect to longitudinal components of 

potentials zE  only. As usual, the field in each half space 

is a sum of charge’s self-field and additional (radiation) 

field excited by the boundary. After a series of 

cumbersome calculations, we obtain that radiation field in 

vacuum area ( 0z  ) is a sum of two waves, first of them 

has polarization coinciding with that of self-field ( rE , 

zE  and H  components, co-polarization), while the 

second one has the orthogonal polarization ( E , rH  

and zH  components, cross-polarization): 
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Figure 1: Geometry of the problem. 
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Im 0 ,  2 2 2 2 1vs V   .  In the case of weak 

chirality, 1/ n  , coefficient (9) is proportional to  .  

Far-field ( 0 1k R  ) can be determined from formulas 

(7) and (8) using saddle-point technique:  
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while R -component tends to zero. There are two 

transversal spherical waves with linear polarization. They 

have identical phase velocity c . Vectors of electric field 

of these waves are mutually orthogonal, rad
E , rad

H  and 

Re  form right-hand orthogonal set. If v
coB  and v

crB  are 

purely real, then phase difference between waves (12) and 

(13) is equal to 2 , and the summary wave has elliptic 

polarization with main axes e  and e . In other cases, 

polarization ellipse is rotated over some angle depending 

on phase of polarization coefficient 

0 sin

P

r

i rad rad v v
cr co

k k
P P e E E i B B

      .  (14) 

In general case, we have in the harmonic regime  ( ) Re exprad
E t E i t      ,           (15) 

 ( ) Re exprad
E t E i t      .           (16) 

Excluding time dependence from (15) and (16), we obtain 

the following relation: 
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Equation (17) determines the polarization ellipse, i.e. 

hodograph of the vector E e E e E     . As one can 

show from (17), main axes of this ellipse are rotated with  

 

 

 

respect to e  and e  at angle pe  determined by the 

following relation:   1
2

tan 2 2 cos 1pe PP P    .             (19) 

NUMERICAL RESULTS 

Typical behaviour of ( )n   in accordance with (2) is 

shown in Fig. 2. We choose 3 frequencies and calculate 

radiation patterns in the far-field zone using (12) and (13) 

for relatively small ( 0.1  ) and relatively large 

( 0.9  ) charge’s velocity. Results are shown in Fig. 3.  
In most cases, radiation patterns have single lobe. 

Magnitude of the lobe for rad
E  components is usually 

several orders larger compared with that for 
rad

E . 

However, for large frequency ( 5 r  ) these lobes are 

comparable. In some cases patterns have two lobes. In 

particular, for 5 r   second lobe for angles close to 

/ 2  (near the interface) is connected with lateral wave 

(contribution of the branch point). In fact, magnitude of 

this lobe is greater than that of the “ordinary” lobe.  

We have also plotted polarization ellipses for angles of 

lobe’s maximum (these angles indicated within each lobe 
in Fig. 3). It is supposed that corresponding wave 

propagates to the observer (along Re ). In most cases, 

these ellipses are strongly prolonged along e  direction, 

i.e. spherical waves have expressed elliptical polarization 

with main axes e  and e . However, for  5 r   

polarization ellipse is similar to circle ( 0.1  ), while 

for 0.9   its main axes are rotated by considerable 

angle.      
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Figure 2: Typical dependencies of n  over  . 
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Figure 3: Radiation patterns ( ,| |rad
E   in units 

2 2/pq c  over  ) for 0 100k R   and ellipses of polarization (plotted for 

angles of lobes’ maxima) in vacuum area for three frequencies of Condon model (2) with p r  , 0 0.3 p  . Waves 

propagate to the observer (along Re ) and vector E  rotates along polarization ellipses in ( , )  -plane. 
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