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Abstract 
Transverse gradient undulator (TGU) is attracting more 

and more attentions, especially for the rapid progress of 
laser plasma accelerator techniques. The transverse 
gradient of TGU is usually given by an empirical formula 
simply derived from the empirical formula of a uniform-
parameter undulator. In this paper, we numerically 
investigate the transverse magnetic field of TGUs using 
the RADIA code. Through many simulations for TGUs 
with different magnet structures, we have given the 
dependences of transverse gradient parameter on the cant 
angle, the undulator period and the average gap. Based on 
these results, when the cant angle is small and the variable 
g/u is in the range of 0.4-0.6, the simulation results agree 
with the empirical formula well. But, with the growing of 
the cant angle, or with the growing of the deviation of 
g/u from the range of 0.4-0.6, the difference between the 
simulation results and the empirical formula becomes 
larger. 

INTRODUCTION 
Undulator is a core component of free-electron lasers 

(FELs), providing the lateral cyclic static magnetic field 
for the interaction between the electrons and optical field. 
In a uniform-parameter undulator, the field strength acting 
on the beam is identical for all electrons. As a result, the 
radiation bandwidth is affected much by the energy 
spread and emittance of the electron beam [1]. Transverse 
gradient undulator was proposed to reduce the sensitivity 
to the energy variations for FEL oscillators in the 
beginning [2, 3] and now is widely used in FEL 
operations.  

In recent years, laser plasma accelerators (LPAs) have 
made tremendous progress in generating high energy, 
high peak current, low emittance beams in a very compact 
scale [4, 5]. The electron beam produced by such an 
accelerator was successfully sent through conventional 
undulator to generate spontaneous radiation [6, 7]. 
However, LPA beams have rather large energy spread on 
the order of a few percent level, and such energy spread 
hinders the short-wavelength FELs application. One of 
the possible ways to solve this problem is the use of 
transverse gradient undulator [8]. Another important 
application of TGU is making the transverse-longitudinal 
phase space coupling, proposed in the phase-merging 
enhanced harmonic generation (PEHG) scheme [9, 10]. In 

the PEHG, a transversely dispersed electron beam travels 
through the TGU modulator, around the zero-crossing of 
the seed laser, the electrons with the same energy will be 
merged into a phase with the same longitudinal phase, and 
then bunch at very high harmonics after dispersion 
section.  

A TGU is usually realized by canting the magnetic 
poles of a uniform-parameter undulator, as illustrated in 
Fig. 1. At present, the transverse gradient of a TGU is 
given by an empirical formula simply derived from the 
empirical formula of a uniform-parameter undulator, as 
used in Ref. [8]. In this paper, we investigate the TGU 
magnetic field by numerical simulations using RADIA 
code [11]. The comparison of numerical simulation and 
the empirical formula for a uniform-parameter undulator 
is given. Next, we simulate the TGU magnetic field and 
check the results with the existed empirical formula. 
Finally, we sumarize in the last section.  

 

 
Figure 1: Transverse gradient undulator by canting the 
magnetic poles. Each pole is canted by an angle  with 
respect to the xz plane. 

THE MAGNETIC FIELD OF A UNIFORM-
PARAMETER UNDULATOR 

For a uniform-parameter hybrid undulator, the peak 
magnetic intensity B0 on the axis can be given by the 
empirical formula [12, 13]: 

2( )
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where, g andu are the gap and period of the undulator, 
respectively, and a = 0.55Br + 2.835, b = -1.95Br + 7.225, 
c = -1.3Br + 2.97, where Br is the remanence of the 
permanent magnet blocks. This formula has been proved 
that it was effective in practical measurement, however, it 
was found to be a little larger (<5%) than the practical 
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magnetic intensity from measurement in our many years’ 
experience. 

Another way to calculate the magnetic field of an 
undulator is the simulation by using the RADIA code, 
which has been proved valid for undulator design. We 
take the hybrid undulator composed of NdFeB magnet 
blocks and NdFeV magnet poles as an example. Using the 
parameters of UND-1 listed in Tab.1, the magnetic field 
with undulator gap of 18 mm is simulated and shown in 
Fig.2. In this undulator, the value of  g/u is about 0.41, 
which locates in the applicable scope of the empirical 
formula. From Fig.2, the peak field strength on the axis is 
about B0=0.5942 T, while from Eq. (1) it is 0.5998 T. The 
simulation result is about 1% smaller than that from Eq. 
(1). 

 
Table 1: Main Parameters of the Undulator 

Parameters                                       UND-1    UND-2 

period /mm                                           44         80        
remanence of magnetic blocks /T        1.2       1.2 
height of magnetic blocks /mm            45        81 
width of magnetic blocks /mm             17        31 
height of magnetic poles /mm              25        45 
width of magnetic poles /mm                5          9 
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Figure 2: The peak magnetic field B0 on the z axis of a 
uniform-parameter hybrid undulator with the gap of 18 
mm. 

THE MAGNETIC FIELD OF A TGU 
As illustrated in Fig. 1, by canting the magnetic poles, 

one can obtain a linear x dependence of the vertical 
undulator field so that 

0

K
x

K


                                      (2) 

where K0 is the rms undulator parameter on the axis and 

0 00.934 [cm] [T]uK B . Based on Eq.(1), for a full 

angle 2 y x    , the gradient parameter is 
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Here g is the average gap of the cant poles. This formula 
has been used in Ref. [8] for calculating the gradient 
parameter. 

Using parameters listed in Table. 1, we firstly simulate 
the magnetic field of TGU with the cant angles of = 
0.05, 0.1, 0.15 rad, at the fixed average gap of 20 mm. 
From Fig.3, one can easily find that the peak magnetic 
field strength has a linear dependence on transverse 
position x, and the gradient increases with the increasing 
of the cant angle. 
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Figure 3: Variation of peak magnetic field strength B0 with 
x at the average gap of 20 mm. 
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Figure 4: Variations of the gradient parameter with the 
full cant angle at different average gaps of 10 mm,  20 
mm and 30 mm. 

 
Based on the results in Fig. 3, the variations of gradient 

parameters with the different cant angles can be 
calculated. They are depicted in Fig. 4, and compared 
with the result given by Eq. (3). It is obviously that the 
gradient parameter is in direct proportion to the cant angle, 
which agrees with Eq. (3). One also can find that the 
gradient parameter from Radia is larger than that from Eq. 
(3), and the difference becomes growing as the cant angle 
increases, even the RADIA result being larger by about 
10% while = 0.15 rad. This may be partially induced by 
that as mentioned above, the peak magnetic field from 
RADIA is usually a little smaller than that calculated by 
Eq. (1). However, we think that the difference mainly 
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comes from the misknowledge of the coefficient  
2( 2 )u ub c g 

 

in the proportional relationship. That 

is to say, Eq. (1) appears needing some modification. 
Next, we investigate the dependence of the transverse 

gradient on the average gap. In FEL applications, we 
usually need to adjust the undulator gap to tune the 
resonant wavelength. Normally, the magnet blocks and 
poles are installed on the mechanical bracket and there is 
usually only one drive motor or two motors locating at 
both ends. The undulator blocks and poles at one side can 
be considered as a whole, and in FEL experiments, the 
gap only can be changed a same variation for each period 
simultaneously. Under this condition, it is worth 
investigating the variation of the transverse gradient with 
the average gap. 
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Figure 5: Variation of the transverse gradient with the rate 
of the average gap and the period, at different undulator 
periods. Top: = 0.05 rad; Bottom: = 0.1 rad. 

 
Figure 5 gives the variation of the transverse gradient 

with the average undulator gap from RADIA simulation 
and Eq. (3) at the fixed cant angles of = 0.05, 0.1 rad, 
for different periods of 44 mm and 80 mm. From the 
illustrations, the two kinds of results agree well when the 
variable g/u locates in the range of 0.4-0.6, and in the 
two sides of this range, the simulation results are larger 
than that from Eq. (3) and the difference gradually grows 
with the increasing of the deviation. Obviously, the 

transverse gradient does not linearly vary with the 
average undulator gap. It seems that a term including 
(g/u)

2 is omitted in Eq. (3), corresponding to a term 
including (g/u)

3 omitted in Eq. (1).  This also gives an 
explanation for the difference of the relation -between 
the simulation results and Eq. (3). We attempted to add a 
term including (g/u)

3 into Eq. (1), but it was found that 
the coefficients b and c also needed to be modified by a 
small amplitude. However, Eq. (1) is a well-known 
empirical formula used widely, and the modification must 
be based on much experience. 

SUMMARY 
In summary, we have numerically investigated the 

magnetic field of transverse gradient undulator and 
compared the results with those from Eq.(3), through 
much work of RADIA simulations for TGUs with 
different undulator structures. The dependences of 
transverse gradient parameter on the cant angle, the 
undulator period and the average gap have been given. 
Based on these results, when the cant angle is small and 
the variable g/u is in the range of 0.4-0.6, the simulation 
results agree with Eq. (3) very well. But with the growing 
of the cant angle, or with the growing of the deviation of 
g/u from the range of 0.4-0.6, the difference between the 
simulation results and Eq. (3) becomes larger. We 
speculate that these differences come from that a term 
including (g/u)

3 is omitted in Eq. (1) and then a term 
including (g/u)

2 is omitted in Eq.  (3). 
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