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Abstract

Reliability has been identified as a key factor limiting

the development of certain particle accelerator applications,

for example Accelerator-Driven Systems (ADS) for energy

production and waste-transmutation. Previous studies of

particle accelerator reliability have been undertaken using

conventional techniques, such as Reliability Block Diagrams

(RBD), Fault Tree Analysis (FTA), etc. Although limited

data surrounding components and their failure modes limits

the applicability of conventional techniques for analysing

the reliability of particle accelerators. In addition industrial

applications of particle accelerators, i.e. energy production,

require a real time response to failure. In this paper we exam-

ine a holistic approach to accelerator reliability modelling

using Electric Network Frequency (ENF) criterion to look

for emergent behaviour of the particle accelerator, from com-

plex datasets, such as beam current/charge, created by the

diagnostics systems during the machines operation. To look

for predictive characteristics just prior to a machine trip.

INTRODUCTION

The Electric Network Frequency (ENF) criterion is a pro-

cedure from audio forensics [1] where an audio recording’s

autheticity is validating by extracting low frequency mains

hum and trying match it to a reference database. If a match

is found the sample is determined as authentic (not tampered

with, taken at the presented date and time), if matching fails

the sample can be considered tampered with and not au-

thentic. The success of the matching algorithm can vary

depending on the sample size and analysis method, as de-

scribed in [2]. Simplified, the procedures can be reduced to

the following steps:

1. continuously record and save a reference database of

mains electrical hum

2. from a given audio sample extract the low frequency

hum

3. try to match the sample to the database using different

techniques (e.g. root-means squared)

4. if match is successful the date and time of sample are

confirmed

In this paper we propose an analogous approach to deter-

mine the type of accelerator pulses. Instead of determining
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the time the pulse occured we are interested if we can estab-

lish and determine if a given pulse is preceding a machine

trip. Focus of the paper is to describe and present result on:

• the type of data used to create a reference database, as

well as the associated procedures

• matching method parameter estimation

• the matching algorithm with two different matching

methods

• conclusions from the results of the matching

DATA AND DATABASES

Mains hum is the sound associated with alternating cur-

rent at the frequency of the mains electricity. Depending on

the country and it’s power-line frequency, the fundamental

frequency of this sound is usually 50 Hz or 60 Hz. An ENF

database then consists of a continuous recording of this sig-

nal for a given country, see [1] for example. One suitable

implementation is to store the sampled signal as a series of

waveforms with associated timestamps. Figure 1 shows a

sample signal from such a database.

Figure 1: ENF Signal

Therefore, the question is if similar signal can be observed

with pulsed particle accelerators. Our proposed approach is

to use the measured beam current from the SNS accelerator,

as described by [3].

The characteristics of an acquired single pulse waveform

are: 25.000 datapoints recorded at the speed of 100 MHz,

each waveform representing 25 µs machine time, see Fig 2.

Acquired waveforms represent three unique types of sig-

nals - the last normal pulse before a machine trip (refered

to as Previous pulse), the off-normal, tripped pulse and the

first successful pulse after the accelerator recovered from

the off-normal fault (refered to as the Next pulse). For our

purposes, we decided to create two different databases:
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• Database composed of last normal pulses (the last

pulses considered normal before the pulse that was

registered as off-normal (i.e. caused machine trip) was

generated)

• Database composed of first pulses considered normal

again after machine recovered successfuly from fault

Signal extraction

One can observe in Fig 2 that the trailing part of the

measurement is zero, or very close to zero. This region of

the waveform is common to all measurements and will be

for our purposes omitted, since it does not differ from one

measurement to another. The initial part of the measurement

on the other hand has very distinct particle bunch-by-bunch

measurements of beam current, see Fig 4 for zoomed region

of the measurement.

The first step in creating the database is to extract the non-

zero region of the signal. The region of interest is determined

by a simple algorithm:

if more than 10 consequtive samples are above the thresh-

old of 0.25 mA mark the start of the region of interest. If

more than 50 consequtive samples are below the threshold

mark the end of the region of interest.

An extracted datasample can be seen in Fig 3. De-

scribed algorithm extracts on average about 14 500 to

15 000 datapoints.

Database creation

The databases are created by concatenating respective

extracted signal vectors into a larger, continous signal vector.

The threshold of 0.25 mA in the extraction algorithm was

chosen after experimentation to remove the trailing zeros and

the initial ramp-up of the signal creating strong discontinuty

in the concatenated signal.
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Figure 2: Single pulse signal

MEASURING VECTOR LIKELINESS AND

VECTOR MATCHING

If we are to determine if a certain signal matches a

database or not, we need to define a measure of how different

0 It is to be explored what is the appropriate amount of signal that should

be removed in order to create smoother transitions in the database vector

or if some other method should be applied
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Figure 3: Extracted single pulse signal
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Figure 4: Single pulse signal, zoomed

(or similar) two vectors are. For ENF criterion [1] proposes

two methods:

• Square root of summed squared difference between two

vectors, i.e. root mean squared (RMS) between two

vectors x and y of length L, defined as

RMS(x, y) = Erms =

√

∑L
i=1(x[i] − y[i])2

L
(1)

The smaller the value, the more two vectors are alike

(Erms for identical vectors equals0).

• Correlation coefficient (CC) between two vectors x and

y of length L, defined as

CC(x, y) =

∑L
i=i (x[i] − x̄)(y[i] − ȳ)

(L − 1)σxσy

(2)

where x̄, ȳ represent vector averages and σx, σy stan-

dard deviations respectively. The coefficient has values

in the range ρ ∈ [−1, 1], the closer to 1, the more the

two vectors are similar (i.e. stronger correlation).

Matching process

To determine if a certain vector is the same type as the

database we compare it to, we need to define thresholds

that would decide this. Ideally using the RMS method, two

vectors are alike if RMS between the two equals 0 But is

it acceptable if error is 0.1 ? To get an estimation of such
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errors we’ve created two database from roughly 200 pulse

samples, each database only consisting of either previous or

next pulses. Then we took 100 000 random, non-overlapping

samples of from each of the database and calculated RMS

and CC values for them respectively. We repeated measure-

ments for vector lengths from 100 to 15 000

Results are summarized in Table 1 and Table 2. Observed

values give us an estimation of what could be considered

’random noise’ in the database (approach is analogous to

threshold estimation in [1]). Our assumption is that any vec-

tor of given length with RMS value lower than in respective

RMS column entry or CC value higher than in the CC col-

umn is considered matched to that database. Figures 5 and

6 illustrate an example of a RMS mathed signal to database

and a CC matched signal respectively.

Figure 5: RMS Matched Signal, Vector Length 500

Figure 6: CC Matched Signal, Vector Length 500

Table 1: Minimum RMS and maximum CC values for Pre-

vious pulses database

Vector length Minimum RMS Maximum CC

100 0.00529395 0.99907746

500 0.00744177 0.99852720

1000 0.00741592 0.99828814

2500 0.00789533 0.99810360

5000 0.00833440 0.99785245

7500 0.00851705 0.99783553

10000 0.00863439 0.99770650

12500 0.00871000 0.99767169

15000 0.00883290 0.99774651

Table 2: Minimum RMS and maximum CC values for Next

pulses database

Vector length Minimum RMS Maximum CC

100 0.00620465 0.99891061

500 0.00770854 0.99824145

1000 0.00802875 0.99816530

2500 0.00820027 0.99797494

5000 0.00834594 0.99798076

7500 0.00844571 0.99782432

10000 0.00849537 0.99778060

12500 0.00933407 0.99766753

15000 0.00926642 0.99753439

MATCHING SETUP, PROCEDURE AND

RESULTS

In this section we present the matching setup and the

observed results.

Database and sample setup

For the experiment two databases were constructed from

two training sets:

• Previous database was constructed from 1201 Previous

extracted pulse waveforms, total database waveform

length: 18299571.

• Next database was constructed from 1177 Next ex-

tracted pulse waveforms, total database waveform

length: 17791999.

For the matching in the experiment, 2 sets of independent

samples were used

• 100 extracted Previous pulses

• 99 extracted Next pulses

The thresholds applied were: 0.00863439 for RMS and

0.99783553 for CC values.

Matching procedure

The matching procedure has the following steps:

1. Define thresholds for RMS and CC values

2. From set of samples, elect sample s of length L

3. From databases, select database D of length N

4. For every index i from [0..N − L] take a section of the

database of length L, d = D[i, . . . , i + L]

5. Calculate RMS(s, d) and CC(s, d)

6. Check if thresholds are reached, if yes, match is found,

increase i by L (step over matched section)

In simplified terms: for a given sample, we walk along

the database vector and calculate RMS and CC values. If

they reach the threshold, we record as matched and step over

the matched section.
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Matching results

The matching algorithm would take a a Previous or Next

sample and try to match it to both Previous and Next database.

For each sample there are 4 possible outcomes:

• If a sample of type A has at least one match to database

of type A, we record that as correctly identified, or,

Correct

• If a sample of type A has at least one match to database

of type B, we record that as incorrectly identified, or,

False

• If a sample of type A has at least one match matched to

both database of type A AND database of type B, we

record that as identified As both

• If a sample of type A has NO matches to database of

type A OR type B, we record that as Not identified

Results are summarized in Table 3 and Table 4.

Table 3: Previous Sample Matching Results, Procentage of

All Samples

Method Correct False As both Not identified

RMS 6% 20% 23% 51%

CC 9% 15% 29% 47%

Table 4: Next Sample Matching Results, Procentage of All

Samples

Method Correct False As both Not identified

RMS 30% 0% 34% 35%

CC 32% 2% 42% 23%

CONCLUSION

Although some interesting results have been observed

we believe the procedures described above needs further

refinement. Further focus on data filtering and extraction

(and classification) to create better databases is required.

Matching algorithm also needs improving since the choice

of threshold levels might not be suitable for our analogous

but modified approach.

We have already seen finer data (4x higher acquisition

speed) available which means more detailed waveforms and

databases which could also further improve out methods and

yield more precise results.
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