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Abstract

Most lattice correction algorithms, such as LOCO [1],

rely on the amplitude of the BPM signals. However, these

signals are a mixture of the BPM gain and beta-beat. Even

though BPM gain can be fitted by analyzing the statistics

of all the BPMs in a ring accelerator, we found the uncer-

tainty is on the order of a few percent. On the other hand,

the betatron phase advance, which is obtained from the cor-

relation of two adjacent BPMs, is independent of the BPM

gain and tilt error. It was found at NSLS-II that the measure-

ment precision of the phase advance is typically 1mr, which

corresponds to about 0.2% of beta beat. The phase error

can be corrected similarly using a reversed response matrix,

and at NSLS-II the phase error can be corrected to <10mr

(p-p) in less than half an hour. The same technique can be

applied to the nonlinear lattice. By comparing the phase ad-

vance differences between the on- and off- orbit lattices, the

sextupole strength error can be identified. Simulation and

experimental results are presented in the paper.

INTRODUCTION

The equivalence of betatron phase or amplitude was prob-

ably realized earlier but the first example of application was

only found recently in a 1993 PAC paper by Castro of CERN

[2]. Therein the phase was calculated from a Fourier Trans-

form of the BPM turn-by-turn signal, then the phase devia-

tion was converted to beta function for correction. The mea-

surement uncertainty was determined to be 4-5mr, which

corresponded to 5% of beta beat. The approach was pur-

sued at many facilities afterwards, for example, Cornell [3],

SSRL [4], LHC [5], RHIC [6], Diamond [7], and PSI [8].

In [3] it was shown that the phase beat can be decomposed

into two sinusoidal wave, very similar to the beta beat. And

it was shown analytically that linear coupling does not af-

fect the betatron phase to the first order. In [4] and [5] it

was pointed out that the phase beat is equivalent to the beta

beat, and can be corrected directly just like the beta beat cor-

rection. The consensus in almost all the references is that

the phase measurement and correction is fast and immune

to BPM calibration error. Another advantage that was not

mentioned so frequently is that turn-by-turn signal does not

require stored beam; therefore the method is useful in situ-

ations like commissioning. At NSLS-II the beta-beat was

corrected down to several percent at commissioning using

turn-by-turn data [9, 10]. So far, this technique is limited

by a 5mr phase error and the residual beta beat is usually
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5-6% [8], which is similar to the results when the method

was first proposed.

This paper will start from the improvement of the phase cal-

culation algorithm, and show an approach to 1mr resolution.

The linear and nonlinear lattice correction at NSLS-II is pre-

sented as an example.

REFINED FOURIER TRANSFORM

The BPM turn-by-turn signal is pseudo-sinusoidal due

to damping and oscillation from the other planes. The first

step of the analysis is to identify the main frequency. Many

methods have been tried and we found NAFF [11] is the

most accurate for this purpose. The idea is to find the fre-

quency of the maximum amplitude that fits the oscillation

data. A Hanning window significantly improves the preci-

sion. If the frequency ν is known, the standard way to cal-

culate the phase of a discrete signal xn, n=1,2,3· · · ,N is

a =
N∑

i

xi sin(2πνi) b =
N∑

i

xi cos(2πνi) (1)

and the phase φ

φ = tan−1(−a/b). (2)

However the error from Eq.( 2) is 1/N + δφe + πNδν,
where δν is the error of the frequency. The 1/N term is

due to damping or Nν being a non-integer. The δφe term is

caused by noises in the signal. The third term could be large

and completely invalidate the calculation; therefore the fre-

quency must have a precision much less than 1/N .

The 1/N term can be overcome by a refined phase search

similar to the frequency search in NAFF, or analytically. As-

sume the signal can be approximated by

xi = Ae−αθi cos(νθi + φ + ε ), (3)

where θi = 2πi, A and α are the amplitude and the damping

coefficient determined from other methods. ε is the correc-

tion to the phase in Eq.( 2). ε is given by

ε =
e1 − e2
e3 − e4

(4)

where

e1 =

∑

i

A
2

exp(2αθi ) sin 2(νθi + φ)

e2 =

∑

i

xi exp(αθi ) sin(νθi + φ)

e3 =

∑

i

xi exp(αθi ) cos(νθi + φ)

e4 =

∑

i

A exp(2αθi ) cos 2(νθi + φ).
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The results from Eq.(4) is very close to numerical search

if the signal is regular. The amplitude of ε is on the order

of a few mili-radian; therefore the correction is critical for

our purpose.

A simple simulation was carried out to test the algorithm.

In this case a Gaussian noise with the amplitude A · R is

added to Eq.(3). The amplitude, frequency and phase were

calculated by the script, and compared with the input values.

Figure 1 shows the difference versus the noise ratio R.

At NSLS-II the BPM turn-by-turn noise for a 10mA 100-

Figure 1: The frequency (ν, μHz) and phase (φ, mr) error

grow linearly with signal-to-noise ratio (R, %). ν and φ are

obtained from Naff fitting of 1000 points. 20 seeds were

averaged for each R value. The fitted lines are given by δν =

1.06 × 10−5 Hz/% R, and δφ = 3.58 × 10−2 Radian/% R;

therefore δφ ≈ πNδν.

bunch train is about 10 μm [12], or 1% if the oscillation

amplitude is 1mm. This corresponds to δν ∼ 10−7 in Fig.1.

The order of magnitude agrees with the frequency deviation

found from the statistics of 180 BPMs in a single event. The

phase uncertainty of 0.4 mr (rms) will be the ultimate limit

in this case.

RESOLUTION AND LINEAR

CORRECTION

For M BPMs in a ring accelerator, the phase vector is

defined as [5]

Δφm = φ
meas

m+1 − φ
meas

m − (φmod

m+1 − φ
mod

m ), (5)

where subscript indicates the BPM index and the super-

script stands for “measurement” or “model”. φM+1 refers

to the first BPM but starts from the next turn.

In order to find out the actual phase measurement preci-

sion at NSLS-II, we varied the strength of a quadrupole

(QH1G2C02A), and measured the phase vector before and

after. Figure 2 shows the comparison of the measured and

calculated phase vector for a current change of 0.5A. The

measured phase was fitted to the calculated phase and a

scale factor fx = 1.015 was applied to the measured value

to account for beta function deviation, hysteresis, transfer-

function uncertainty, and inaccuracy of the hard-edge mod-

eling. The error bar was determined from the standard devi-

ation of 10 repetitive measurement, of which the averaged

deviation is 1.7mr, however, the difference to the model is

calculated to be 0.7 mr (rms of 180 BPMs). The greater

measurement fluctuation is probably caused by orbit drift-

ing, power supply ripple, and rf jitter; but averaging clearly

reduces the effects of these errors.

Figure 2: Comparison of the horizontal phase change ob-

tained from measurement and calculation when the current

of QH1G2C02A is changed by 0.5A, or, ΔK1 = 8.4 × 10−4

1/m2.

The same measurement was repeated at

ΔI=0.05,0.1,0.25,0.5,2A, and the deviation to the model is

shown in Fig.3 for both transverse planes. The amplitude

is about 0.5-1mr, and slightly smaller in the vertical plane.

Figure 3: The standard deviation of the phase dis-

crepancy when the quadrupole current is changed by

ΔI=0.05,0.1,0.25,0.5,2A.

The phase error can be corrected with the reversed re-

sponse matrix from model. At NSLS-II the peak deviation

can be corrected to below 10mr after a few iterations [13].

The process takes about 20-30 minutes due mostly to repet-

itive measurements. A typical residual phase vector is plot-

ted in Figure 4. After correction the lattice was measured

by LOCO [1] and the residual beta beat was determined to

be about 0.9% (x) and 0.6 % (y) rms.
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Figure 4: Typical residual phase error.

SEXTUPOLE CORRECTION

This precise measurement technique was applied at

NSLS-II to correct the sextupole settings. The idea is to

change a horizontal orbit corrector (C) and generate an

orbit wave with 2-4mm peak. This lattice differs from the

original due to focusing of the off-centered sextupoles.

We term this lattice as Corrector-C. The phase vector

of Corrector-C has a maximum amplitude of 50-100mr

and can be measured with the same technique. Figure

5 shows a typical measurement and comparisonwith model.

Figure 5: .The measured and the calculated vertical phase

vector of lattice CH1XG2C30A. The corrector was changed

by 0.18mr.

The same measurement was repeated at 10 correctors.

A correction matrix was calculated from the model and

adjustment to the sextupole strength was obtained. The

model with the updated sextupole settings was compared

again to the measurement. A 10% reduction in discrepancy

was achieved in the vertical plane but the horizontal plane

remained the same.

We measured the dynamic aperture before and after sex-

tupole correction. The criterion for the boundary was 20%

of beam loss to save machine study time. The results are

plotted against simulation in Figure 6. The simulation is

for the ideal lattice, but with physical aperture and magnet

errors. All the numbers were normalized to the injection

point. We speculated a few reasons for the small improve-

ment: 1) the sextupoles are partially powered in series; 2)

the dynamic aperture is already large; 3)other factors, such

as orbit leaking into the vertical plane, and linear coupling.

Figure 6: Dynamic aperture before and after sextupole cor-

rection, and comparison with simulation.

CONCLUSION

With a refined phase calculation technique the beta-

tron phase measurement precision was improved to 1mr at

NSLS-II. Quadrupole and sextupole settings were corrected

at NSLS-II with this technique. The linear lattice can be

corrected to below 10mr (1% in terms of beta beat) and a

small improvement (on top of 15mm) in dynamic aperture

was achieved.
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