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Abstract

Most lattice correction algorithms, such as LOCO [1],
rely on the amplitude of the BPM signals. However, these
signals are a mixture of the BPM gain and beta-beat. Even
though BPM gain can be fitted by analyzing the statistics
of all the BPMs in a ring accelerator, we found the uncer-
tainty is on the order of a few percent. On the other hand,
the betatron phase advance, which is obtained from the cor-
relation of two adjacent BPMs, is independent of the BPM
gain and tilt error. It was found at NSLS-II that the measure-
ment precision of the phase advance is typically I mr, which
corresponds to about 0.2% of beta beat. The phase error
can be corrected similarly using a reversed response matrix,
and at NSLS-II the phase error can be corrected to <10mr
(p-p) in less than half an hour. The same technique can be
applied to the nonlinear lattice. By comparing the phase ad-
vance differences between the on- and off- orbit lattices, the
sextupole strength error can be identified. Simulation and
experimental results are presented in the paper.

INTRODUCTION

The equivalence of betatron phase or amplitude was prob-
ably realized earlier but the first example of application was
only found recently in a 1993 PAC paper by Castro of CERN
[2]. Therein the phase was calculated from a Fourier Trans-
form of the BPM turn-by-turn signal, then the phase devia-
tion was converted to beta function for correction. The mea-
surement uncertainty was determined to be 4-5mr, which
corresponded to 5% of beta beat. The approach was pur-
sued at many facilities afterwards, for example, Cornell [3],
SSRL [4], LHC [5], RHIC [6], Diamond [7], and PSI [8].
In [3] it was shown that the phase beat can be decomposed
into two sinusoidal wave, very similar to the beta beat. And
it was shown analytically that linear coupling does not af-
fect the betatron phase to the first order. In [4] and [5] it
was pointed out that the phase beat is equivalent to the beta
beat, and can be corrected directly just like the beta beat cor-
rection. The consensus in almost all the references is that
the phase measurement and correction is fast and immune
to BPM calibration error. Another advantage that was not
mentioned so frequently is that turn-by-turn signal does not
require stored beam; therefore the method is useful in situ-
ations like commissioning. At NSLS-II the beta-beat was
corrected down to several percent at commissioning using
turn-by-turn data [9, 10]. So far, this technique is limited
by a 5mr phase error and the residual beta beat is usually
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5-6% [8], which is similar to the results when the method
was first proposed.

This paper will start from the improvement of the phase cal-
culation algorithm, and show an approach to 1 mr resolution.
The linear and nonlinear lattice correction at NSLS-IT is pre-
sented as an example.

REFINED FOURIER TRANSFORM

The BPM turn-by-turn signal is pseudo-sinusoidal due
to damping and oscillation from the other planes. The first
step of the analysis is to identify the main frequency. Many
methods have been tried and we found NAFF [11] is the
most accurate for this purpose. The idea is to find the fre-
quency of the maximum amplitude that fits the oscillation
data. A Hanning window significantly improves the preci-
sion. If the frequency v is known, the standard way to cal-
culate the phase of a discrete signal x,,, n=1,2,3--- N is

N

N
a= Z x;sin(2nvi) b= Z x; cos(2nvi) (D

L

and the phase ¢
¢ = tan"(-a/b). ()

However the error from Eq.( 2) is 1/N + 6¢. + nN6v,
where 0v is the error of the frequency. The 1/N term is
due to damping or Nv being a non-integer. The d ¢, term is
caused by noises in the signal. The third term could be large
and completely invalidate the calculation; therefore the fre-
quency must have a precision much less than 1/N.

The 1/N term can be overcome by a refined phase search
similar to the frequency search in NAFF, or analytically. As-
sume the signal can be approximated by

x; = Ae™ % cos(vl; + ¢ + €), 3)

where 8; = 2ri, A and « are the amplitude and the damping
coeflicient determined from other methods. € is the correc-
tion to the phase in Eq.( 2). € is given by

€y — e

€= —= 4
€3 — e4
where
% .

e; = Z ) exp(2a6;) sin2(vl; + ¢)

i
ey = Z x; exp(ab;) sin(v; + ¢)
ey = Z x; exp(a0;) cos(vO; + ¢)
es = Z Aexp(2a8;) cos2(v; + ¢).

i
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The results from Eq.(4) is very close to numerical search
if the signal is regular. The amplitude of € is on the order
of a few mili-radian; therefore the correction is critical for
our purpose.

A simple simulation was carried out to test the algorithm.
In this case a Gaussian noise with the amplitude 4 - R is
added to Eq.(3). The amplitude, frequency and phase were
calculated by the script, and compared with the input values.
Figure 1 shows the difference versus the noise ratio R.

At NSLS-II the BPM turn-by-turn noise for a 10mA 100-
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Figure 1: The frequency (v, uHz) and phase (¢, mr) error
grow linearly with signal-to-noise ratio (R, %). v and ¢ are
obtained from Naff fitting of 1000 points. 20 seeds were
averaged for each R value. The fitted lines are given by 6v =
1.06 x 107 Hz/% R, and §¢ = 3.58 x 1072 Radian/% R;
therefore 6¢ ~ TNov.

bunch train is about 10 um [12], or 1% if the oscillation
amplitude is Imm. This corresponds to §v ~ 10~/ in Fig.1.
The order of magnitude agrees with the frequency deviation
found from the statistics of 180 BPMs in a single event. The
phase uncertainty of 0.4 mr (rms) will be the ultimate limit
in this case.

RESOLUTION AND LINEAR
CORRECTION

For M BPMs in a ring accelerator, the phase vector is
defined as [5]

Adm = 950" = O = (821 = o), 5)

where subscript indicates the BPM index and the super-
script stands for “measurement” or “model”. ¢pr41 refers
to the first BPM but starts from the next turn.

In order to find out the actual phase measurement preci-
sion at NSLS-II, we varied the strength of a quadrupole
(QH1G2C02A), and measured the phase vector before and
after. Figure 2 shows the comparison of the measured and
calculated phase vector for a current change of 0.5A. The
measured phase was fitted to the calculated phase and a
scale factor f, = 1.015 was applied to the measured value
to account for beta function deviation, hysteresis, transfer-
function uncertainty, and inaccuracy of the hard-edge mod-
eling. The error bar was determined from the standard devi-
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ation of 10 repetitive measurement, of which the averaged
deviation is 1.7mr, however, the difference to the model is
calculated to be 0.7 mr (rms of 180 BPMs). The greater
measurement fluctuation is probably caused by orbit drift-
ing, power supply ripple, and rf jitter; but averaging clearly
reduces the effects of these errors.
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Figure 2: Comparison of the horizontal phase change ob-
tained from measurement and calculation when the current
of QH1G2CO02A is changed by 0.5A, or, AK| = 8.4 X 1074
1/ m2.

The same  measurement was repeated  at
AI=0.05,0.1,0.25,0.5,2A, and the deviation to the model is
shown in Fig.3 for both transverse planes. The amplitude
is about 0.5-1mr, and slightly smaller in the vertical plane.
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Figure 3: The standard deviation of the phase dis-
crepancy when the quadrupole current is changed by
AI=0.05,0.1,0.25,0.5,2A.

The phase error can be corrected with the reversed re-
sponse matrix from model. At NSLS-II the peak deviation
can be corrected to below 10mr after a few iterations [13].
The process takes about 20-30 minutes due mostly to repet-
itive measurements. A typical residual phase vector is plot-
ted in Figure 4. After correction the lattice was measured
by LOCO [1] and the residual beta beat was determined to
be about 0.9% (x) and 0.6 % (y) rms.
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Figure 4: Typical residual phase error.

SEXTUPOLE CORRECTION

This precise measurement technique was applied at
NSLS-II to correct the sextupole settings. The idea is to
change a horizontal orbit corrector (C) and generate an
orbit wave with 2-4mm peak. This lattice differs from the
original due to focusing of the off-centered sextupoles.
We term this lattice as Corrector-C. The phase vector
of Corrector-C has a maximum amplitude of 50-100mr
and can be measured with the same technique. Figure
5 shows a typical measurement and comparison with model.
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Figure 5: .The measured and the calculated vertical phase
vector of lattice CH1XG2C30A. The corrector was changed
by 0.18mr.

The same measurement was repeated at 10 correctors.
A correction matrix was calculated from the model and
adjustment to the sextupole strength was obtained. The
model with the updated sextupole settings was compared
again to the measurement. A 10% reduction in discrepancy
was achieved in the vertical plane but the horizontal plane
remained the same.

We measured the dynamic aperture before and after sex-
tupole correction. The criterion for the boundary was 20%
of beam loss to save machine study time. The results are
plotted against simulation in Figure 6. The simulation is
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for the ideal lattice, but with physical aperture and magnet
errors. All the numbers were normalized to the injection
point. We speculated a few reasons for the small improve-
ment: 1) the sextupoles are partially powered in series; 2)
the dynamic aperture is already large; 3)other factors, such
as orbit leaking into the vertical plane, and linear coupling.
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Figure 6: Dynamic aperture before and after sextupole cor-
rection, and comparison with simulation.

CONCLUSION

With a refined phase calculation technique the beta-
tron phase measurement precision was improved to 1mr at
NSLS-II. Quadrupole and sextupole settings were corrected
at NSLS-II with this technique. The linear lattice can be
corrected to below 10mr (1% in terms of beta beat) and a
small improvement (on top of 15mm) in dynamic aperture
was achieved.
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