03 Alternative Particle Sources and Acceleration Techniques
A16 Advanced Concepts
Paper Title Page
TUOBB01 Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator 1065
 
  • G. Ha, M.-H. Cho, W. Namkung
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • M.E. Conde, D.S. Doran, W. Gai, G. Ha, K.-J. Kim, W. Liu, J.G. Power, Y.-E. Sun, C. Whiteford, E.E. Wisniewski, A. Zholents
    ANL, Argonne, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. We present current profile shaping results, aberrations on the shaped profile, and its suppression.  
slides icon Slides TUOBB01 [5.032 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB02 FACET-II Accelerator Research with Beams of Extreme Intensities 1067
 
  • V. Yakimenko, Y. Cai, C.I. Clarke, S.Z. Green, C. Hast, M.J. Hogan, N. Lipkowitz, N. Phinney, G.R. White, G. Yocky
    SLAC, Menlo Park, California, USA
 
  In 2016, the second phase of SLAC's x-ray laser, the LCLS-II, will begin to use part of the tunnel occupied by FACET, and the world's only multi-GeV facility for advanced accelerator research will cease operation. FACET-II is a new test facility to provide DOE with the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II is an opportunity to build on the decades-long experience developed conducting advanced accelerator R&D at the FFTB and FACET and re-deploy HEP infrastructure in continued service of its mission. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The presentation will discuss FACET-II project status and plans for diverse experimental program.  
slides icon Slides TUOBB02 [17.664 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY030 Measurements of Transmitted Electron Beam Extinction through Si Crystal Membranes 1611
 
  • E.A. Nanni, R.K. Li, C. Limborg, X. Shen, S.P. Weathersby
    SLAC, Menlo Park, California, USA
  • W.S. Graves, R. Kirian, J. Spence, U. Weierstall
    Arizona State University, Tempe, USA
 
  A recently proposed method for the generation of relativistic electron beams with nanometer-scale current modulation requires diffracting relativistic electrons from a perfect crystal Si grating, accelerating the diffracted beam and imaging the crystal structure into the temporal dimension via emittance exchange. The relative intensity of the current modulation is limited by the ability to extinguish the transmitted beam via diffraction with a single-crystal Si membrane. In these preliminary experiments we will measure the extinction of the transmitted electron beam at zero scattering angle due to multiple Bragg scattering from a Si membrane with a uniform thickness of 340 nm at 2.35 MeV using the SLAC UED facility. The impact of beam divergence and charge density at the Si target will be quantified. The longevity of the Si membrane will also be investigated by monitoring the diffraction pattern as a function of time to observe the potential onset of damage to the crystal.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY031 Estimation and Suppression of Aberrations in Emittance Exchange based Current Profile Shaping 1615
 
  • G. Ha, M.-H. Cho, W. Namkung
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • W. Gai, G. Ha, K.-J. Kim, J.G. Power
    ANL, Argonne, Illinois, USA
 
  The longitudinal current profile manipulation has been explored for many applications including THz radiation, FEL and advanced acceleration schemes. Especially, collinear dielectric wakefield accelerations require a microbunch shaping for a high transformer ratio. We have studied aberrations from the emittance exchange based current profile shaping to preserve the high transformer ratio. All second order aberration terms in the double dog-leg emittance exchange beam line are discovered. Aberration patterns from each aberration sources like second order terms, space-charge, and CSR and their effect on the transformer ratio are estimated analytically. These aberration sources and corresponding patterns are confirmed using a particle tracking code GPT. Simple methods to suppress each aberration will be presented too. All calculation in this work is done with a double dog-leg emittance exchange beam line.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY032 Radiation from Open Ended Waveguide with a Dielectric Loading 1617
 
  • S.N. Galyamin, A.A. Grigoreva, A.V. Tyukhtin, V.V. Vorobev
    Saint-Petersburg State University, Saint-Petersburg, Russia
  • S. Baturin
    LETI, Saint-Petersburg, Russia
  • S. Baturin
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  Funding: Work is supported by the Grant of the President of Russian Federation (No. 6765.2015.2) and the Grants from Russian Foundation for Basic Research (No. 15-32-20985, 15-02-03913).
Terahertz radiation is considered as a promising tool for a number of applications. One possible way to emit THz waves is to pass short electron bunch through a waveguide structure loaded with dielectric*. In our previous papers, we have analyzed this problem in both approximate** and rigorous*** formulation. However, we have encountered certain difficulties with calculations. In the present report, we are starting to develop another rigorous approach based on mode-matching technique and modified residue-calculus technique. We consider the radiation from the open-ended dielectrically loaded cylindrical waveguide placed inside regular cylindrical waveguide with larger radius. We present structure of reflected and transmitted modes and typical radiation patterns from the open end of larger radius waveguide.
* S. Antipov et al., Appl. Phys. Lett., vol. 100, p. 132910, 2012.
** S.N. Galyamin et al., Opt. Express, vol. 22, No. 8, p. 8902, 2014.
*** S.N. Galyamin et al., in Proc. IPAC'15, pp. 2578-2580.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY034 On Bunch Diagnostics with use of Surface Waves Generated on Planar Wire Grid 1623
 
  • V.V. Vorobev, S.N. Galyamin, A.V. Tyukhtin
    Saint-Petersburg State University, Saint-Petersburg, Russia
 
  Funding: Work is supported by the Grant of the President of Russian Federation (No. 6765.2015.2) and the Grants from Russian Foundation for Basic Research (No. 15-32-20985, 15-02-03913).
Periodic structures can be used for non-destructive diagnostics of charged particle bunches*. We consider structures which consist of thin conducting parallel wires. It is assumed that the structure period is much less than the typical wavelength under consideration. Therefore the influence of the structure on the electromagnetic field can be described with help of the averaged boundary conditions**. We consider radiation of bunches which move along the grid but transversely to wires. Unlike previous works the bunch is assumed to have essential transversal dimensions along with definite longitudinal charge distribution. In particular we analyze the effect of reflection of the surface wave from the structure edge. For all considered situations, analytical and numerical results demonstrate that analysis of the surface waves allows estimating the size and the shape of the bunch.
* A.V. Tyukhtin et al., Phys. Rev. ST AB 17, 122802 (2014); A.V. Tyukhtin et al., Phys. Rev. E 91, 063202 (2015).
** M.I. Kontorovich et al., Electrodynamics of Grid Structures (Moscow, 1987).
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY035 Short-wavelength Radiation of a Small Charged Bunch in Presence of a Dielectric Prism 1626
 
  • A.V. Tyukhtin, S.N. Galyamin
    Saint-Petersburg State University, Saint-Petersburg, Russia
  • E.S. Belonogaya
    LETI, Saint-Petersburg, Russia
 
  Funding: Work is supported by the Grant from Russian Foundation for Basic Research (No. 15-02-03913).
Investigation of radiation of a charged particle bunch in the presence of a large (compared with wavelengths under consideration) dielectric object can be performed using certain approximate methods. We develop here the method based on the known Stratton-Chu formulae which allows calculating the field everywhere outside the object including the Fresnel and Fraunhofer areas, as well as neighborhoods of focal points*. The main problem considered here consists in investigation of radiation of a small bunch moving along boundary of a dielectric prism or in channel inside a prism. Approximate analytical solutions of the problem are obtained and typical numerical results are given.
*S.N. Galyamin and A.V. Tyukhtin, Phys. Rev. Lett. 113, 064802, 2014.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY036 Drive Generation and Propagation Studies for the Two Beam Acceleration Experiment at the Argonne Wakefield Accelerator 1629
SUPSS029   use link to see paper's listing under its alternate paper code  
 
  • N.R. Neveu, M.E. Conde, D.S. Doran, W. Gai, G. Ha, C.-J. Jing, W. Liu, J.G. Power, D. Wang, C. Whiteford, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • S.P. Antipov, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • N.R. Neveu
    IIT, Chicago, Illinois, USA
  • D. Wang
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by by the U.S. Department of Energy under contract No. DE-AC02-06CH11357.
Simplified staging in a two beam accelerator (TBA) has been accomplished at the Argonne Wakefield Accelerator (AWA) facility. This layout consists of a drive beamline and witness beamline operating synchronously. The drive photoinjector linac produces a 70 MeV drive bunch train of eight electron bunches (charge per bunch between 5-40 nC) that pass through decelerating structures in each TBA stage. The witness linac produces an 8 MeV witness bunch that passes through the accelerating structures in each TBA stage. Recent effort has been focused on improving the uniformity of the UV laser pulses that generate the bunch trains. Current work at the AWA is focused on the transition from simplified staging to full staging. A kicker will be designed and installed to direct bunch trains to one TBA stage only. Preliminary calculations and simulation results are presented.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB01 Advanced Acceleration Mechanisms for Laser Driven Ions by PW-lasers 2082
 
  • S.S. Bulanov, E. Esarey, Q. Ji, W. Leemans, T. Schenkel, S. Steinke
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by LDRD funding from Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
With the fast development of laser technology the energy of laser accelerated proton beams rose up to almost 100 MeV. The PW-class laser facilities that are being built right now or are already in operation, such as the Berkeley Lab Laser Accelerator (BELLA) Center, will offer peak intensities approaching 1022 W/cm2. This will allow the development of a new generation laser ion accelerators for numerous applications. The integral part of this task is the investigation of the advanced acceleration mechanisms for laser driven ion beams that would allow for a high degree of control over the angular and energy distributions of ion beams, as well as the increase of the maximum ion energy. We will present recent theoretical and simulation results on three advanced acceleration mechanisms: (i) Directed Coulomb Explosion*, (ii) Radiation Pressure Acceleration**, and (iii) Magnetic Vortex acceleration***.
Reference:
* S. S. Bulanov et al, Phys. Rev. E 78, 026412 (2008).
** S. S. Bulanov et al, Phys. Rev. Lett. 114, 105003 (2015).
*** S. S. Bulanov et al, Phys. Rev. STAB 18, 061302 (2015).
 
slides icon Slides WEOAB01 [39.942 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)