Paper |
Title |
Page |
MOPOR010 |
Impedance Measurements and Simulations on the TCTP and TDI LHC Collimators |
610 |
|
- N. Biancacci, F. Caspers, A. Grudiev, J. Kuczerowski, I. Lamas Garcia, A. Lechner, E. Métral, A. Passarelli, A. Perillo Marcone, B. Salvant, J.A. Uythoven
CERN, Geneva, Switzerland
- O. Frasciello, M. Zobov
INFN/LNF, Frascati (Roma), Italy
- A. Mostacci
Rome University La Sapienza, Roma, Italy
- N. Mounet
EPFL, Lausanne, Switzerland
|
|
|
The LHC collimation system is a critical element for the safe operation of the LHC machine and is subject to continuous performance monitoring, hardware upgrade and optimization. In this work we will address the impact on impedance of the upgrades performed on the TDI injection protection collimator, where the absorber material has been changed to mitigate the device heating observed in machine operation, and on selected secondary (TCS) and tertiary (TCT) collimators, where beam position monitors (BPM) have been embedded for faster jaw alignment. Concerning the TDI, we will present the RF measurements performed before and after the upgrade, comparing the result to heating and tune shift beam measurements. For the TCTs, we will study how the higher order modes (HOM) introduced by the BPM addition have been cured by means of ferrite placement in the device. The impedance mitigation campaign has been supported by RF measurements whose results are in good agreement with GdfidL and CST simulations. The presence of undamped low frequency modes is proved not to be detrimental to the safe LHC operation.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPMW011 |
Current Status of Instability Threshold Measurements in the LHC at 6.5 TeV |
1434 |
|
- L.R. Carver, J. Barranco, N. Biancacci, X. Buffat, W. Höfle, G. Kotzian, T. Lefèvre, T.E. Levens, E. Métral, T. Pieloni, B. Salvant, C. Tambasco
CERN, Geneva, Switzerland
- N. Wang
IHEP, Beijing, People's Republic of China
- M. Zobov
INFN/LNF, Frascati (Roma), Italy
|
|
|
Throughout 2015, many measurements of the minimum stabilizing octupole current required to prevent coherent transverse instabilities have been performed. These measurements allow the LHC impedance model at flat top to be verified and give good indicators of future performance and limitations. The results are summarized here, and compared to predictions from the simulation code DELPHI.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|