Paper | Title | Page |
---|---|---|
TUPMY011 | Simulated Measurements of Cooling in Muon Ionization Cooling Experiment | 1565 |
SUPSS025 | use link to see paper's listing under its alternate paper code | |
|
||
Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMW033 | Acoustic Localization of RF Cavity Breakdown: Status and Progress | 470 |
|
||
Current designs for muon accelerators require high-gradient RF cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to a small region of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Presented here are the algorithms for and results from localizing simulated and experimental acoustic data from the Modular Cavity at the MuCool Test Area at Fermilab. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMY012 | Hybrid Methods for Simulation of Muon Ionization Cooling Channels | 1568 |
|
||
Funding: Work is supported by the U.S. Department of Energy. COSY Infinity is an arbitrary-order beam dynamics simulation and analysis code. It can determine high-order transfer maps of combinations of particle optical elements of arbitrary field configurations. New features are being developed for inclusion in COSY to follow the distribution of charged particles through matter. To study in detail some of the properties of muons passing through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map–Monte Carlo approach in which transfer map methods describe the deterministic behavior of the particles in the accelerator channel, and Monte Carlo methods are used to model the stochastic processes intrinsic to liquid and solid absorbers. The advantage of the new approach is that the vast majority of the dynamics is represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed are expected to simplify the optimization of muon cooling channels which are usually very computationally demanding. Progress on the development of the required algorithms is reported. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMY013 | Progress on Beam-Plasma Effect Simulations in Muon Ionization Cooling Lattices | 1571 |
|
||
Funding: Work supported by the U.S. Department of Energy. New computational tools are essential for accurate modeling and simulation of the next generation of muon based accelerator experiments. One of the crucial physics processes specific to muon accelerators that has not yet been implemented in any current simulation code is beam induced plasma effect in liquid, solid, and gaseous absorbers. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOR025 | Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider | 3832 |
|
||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the U. S. Department of Energy. A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |