Paper |
Title |
Page |
WEPOR015 |
Introduction to WPS System Designed to Measure the Change of Location for PAL-XFEL Girder |
2693 |
|
- H. J. Choi, K.H. Gil, H.-S. Kang, H.-G. Lee, S.B. Lee, K.W. Seo
PAL, Pohang, Kyungbuk, Republic of Korea
|
|
|
To maintain stable electron beam parameters (Energy 10GeV, Charge 200pC, Bunch Length 60fs, Emittance X/Y 0.481um/0.256um), PAL-XFEL equipment should keep the alignment of accelerator (±100um) and undulator (±50um) constant. To ensure the precise measurement and alignment of PAL-XFEL, GPS-based surface geodetic network and the installation of a tunnel measurement network inside buildings was prepared and the fiducialization of major equipment was completed. After PAL-XFEL equipment is aligned, if the ground and buildings go through vertical changes during operation, tilt and misalignment of equipments (correct magnet, BPM, accelerator) will cause errors in the electron beam trajectory, which will lead to changes in the beam parameter. Hydrostatic Levelling System (HLS) was installed to measure vertical changes in buildings and the ground (sinking and uplifting) continuously and systematically, and Wire Position System (WPS) installed to measure changes in Girder. This paper introduces the operation principle, design concept, installation status, and operation status of WPS.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPMY028 |
Technical Overview of the PAL-XFEL Conventional Facility |
3715 |
|
- I. Mok, M.S. Hwang, T.-H. Kang, K.W. Kim, K.R. Kim, S.H. Kim, S.N. Kim, Y. C. Kim, B.H. Lee, H.M. Lee, M.S. Lee, B.I. Moon, K.W. Seo, C.H. Son, C.W. Sung, J. Yang
PAL, Pohang, Republic of Korea
- Y.C. Kim, J.H. Lee
Haenglim Architecture & Engineering Co. Ltd, Seoul, Republic of Korea
- I.S. Ko
POSTECH, Pohang, Kyungbuk, Republic of Korea
- S.W. Yong
Posco Engineering & Construction., Ltd., Gyeongsangbuk-do, Republic of Korea
|
|
|
Pohang Accelerator Laboratory (PAL) has finished construction of a 1,110m long 10GeV X-ray free electron laser (XFEL) linear accelerator building in FY2015. In order to secure high-sensitive of XFEL accelerating devices, more advanced and well proven technologies were adopted in the design of the building. These are the ground improvement underneath the tunnel and tunnel structure itself against the possible ground deformation, air conditioning system to maintain the temperature and humidity in the tolerable ranges and architectural zoning. In this paper we describe the features of design and construction of the XFEL accelerator building.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|