Paper | Title | Page |
---|---|---|
TUPMY004 | The MICE Demonstration of Muon Ionization Cooling | 1547 |
|
||
Funding: STFC, DOE, NSF, INFN, CHIPP AND MORE Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment. Submitted by the MICE speakers bureau that will identify later a member of the collaboration to present the contribution |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMB053 | nuSTORM FFAG Decay Ring | 3369 |
|
||
The neutrino beam produced from muons decaying in a storage ring would be an ideal tool for precise neutrino cross section measurements and search for sterile neutrinos due to its precisely known flavour content and spectrum. In the proposed nuSTORM facility pions would be directly injected into a racetrack storage ring, where circulating muon beam would be captured. The storage ring has two options: a FODO solution with large aperture quadrupoles and a racetrack FFAG (Fixed Field Alternating Gradient) using the recent developments in FFAGs. Machine parameters, linear optics design and beam dynamics are discussed in this paper. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMB054 | FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line | 3372 |
|
||
The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |