Paper | Title | Page |
---|---|---|
TUPMY018 | Recent Progress of Proton Acceleration at Peking University | 1588 |
SUPSS027 | use link to see paper's listing under its alternate paper code | |
|
||
We study the enhanced laser ion acceleration using near critical density plasma lens attached to the front of a solid target. The laser quality is spontaneously improved by the plasma lens and energy density of hot electrons is greatly increased by the direct laser acceleration mechanism. Both factors will induce stronger sheath electric field at the rear surface of the target, which accelerates ions to a higher energy. Particle-in-cell simulations show that proton energy can be increased 2-3 times compared with single solid target. This result provides the opportunities for applications of laser plasma accelerator, such as cancer therapy. Further experiments will soon be carried out on 200 TW laser acceleration system at Peking University. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMY011 | Compact Laser Plasma Accelerator at Peking University | 2569 |
SUPSS033 | use link to see paper's listing under its alternate paper code | |
|
||
A brand new and solely accelerator based on the interaction physics of high intensity ultrafast laser and plasmas, named Compact LAser Plasma Accelerator (CLAPA), was recently built. The laser system can deliver 5J/25fs @ 800nm pulses with contrast of 10-10. Experiments on electron acceleration is scheduled with the regime of laser wakefield acceleration. The charge and the energy spread of the accelerated electron beams will be concerned mainly. The experiments is planned with gas targets with single and dual stages. For the single stage acceleration, we will try density ramp injection and a loose focusing for a monoenergetic electron beam with more charge for some applications. With the PIC simulations and new injection methods, it is expected to generate GeV/tens pC electron beam with an energy spread of <1%. For the two stage cascaded acceleration, we will focus on the staged acceleration and control of the injection of the second stage, as well as the acceleration length of the second stage by manipulating the parameters of the gas target as well as the laser itself. The far future goal of the second plan is to develop a designable and applicable accelerators.
* W.Lu, Phys. Rev.ST Accel. Beams 10.061301 (2007) ** J. Faure, Nature 431, 541 (2004) ***J.S. Liu, Phys. Rev. Lett 107, 035001 (2011) |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |