Paper |
Title |
Page |
MOPOW036 |
Design Optimization of an X-band based FEL |
793 |
|
- A.A. Aksoy
Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
- A. Latina, J. Pfingstner, D. Schulte
CERN, Geneva, Switzerland
- Z. Nergiz
Nigde University, Nigde, Turkey
|
|
|
A design effort for a new generation of compact, cost-effective, power-efficient FEL facilities, based on X-band technology, has been launched. High-frequency X-band acceleration implies strong wakefields, tight alignment and mechanical tolerances, and challenging stability issues. In this paper a design is proposed for the injector and the linacs, including the two bunch compressors. RF gun and injector simulations have been performed, successfully meeting the stringent requirements in terms of minimum projected emittance, sliced emittance and minimum bunch length. In the design of the linac and bunch compressors wakefield effects and misalignment have been taken into account. Start-to-end tracking simulations through the optimized lattice are presented and discussed.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPMR046 |
Advanced BBA Techniques for the Final Focuses of Future Linear Colliders |
3504 |
|
- J. Snuverink, A. Latina, D. Schulte, R. Tomás
CERN, Geneva, Switzerland
- R.M. Bodenstein
JAI, Oxford, United Kingdom
|
|
|
Tuning the Final-Focus System of future linear colliders is one of the open challenges the linear collider community is undertaking. Future colliders like ILC and CLIC will feature complex lattice design to focus the beams to nanometer level at the Interaction Point. Standard Beam-Based Alignment (BBA) techniques have proven to hardly meet the requirements in terms of acceptable emittance growth, in both machines. A set of new techniques, respectively called: nonlinear Dispersion-Free Steering (DFS), DFS-knobs scan, and hybrid DFS-knobs with beamsize measurements, have been put in place to cope with the challenge. This paper will reveal the key ideas behind the new techniques, and compare their effectiveness w.r.t. the conventional BBA tuning procedures.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPOR029 |
First Start-to-End BBA Results in the CLIC RTML |
3841 |
|
- Y. Han, L. Ma
SDU, Shandong, People's Republic of China
- A. Latina, D. Schulte
CERN, Geneva, Switzerland
|
|
|
CLIC is a design study for a 3 TeV linear collider designed for the high-energy frontier in the post-LHC era. The Ring To Main Linac (RTML) part of CLIC is a long section that must transport the electron and the positron bunches through more than 20 km of beamlines, with minimal emittance growth. A sequence of three beam-based alignment (BBA) techniques must be used to transport the beam: one-to-one correction (OTO), dispersion-free steering (DFS), and sextupole correction (SCS). The performance of the whole correction procedure is tested under several realistic imperfections: magnets position offsets, magnets rotation errors, magnets strength errors and emittance measurement errors. The results show that the emittance growth budgets can be met both in the horizontal and vertical planes.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|