Paper | Title | Page |
---|---|---|
MOPMR036 | Using a Single Shot Spectrometer to Determine the Spectral Characteristics of the Beam as a Result of Micro-bunching Instabilities | 327 |
SUPSS068 | use link to see paper's listing under its alternate paper code | |
|
||
A single shot spectrometer has been designed and is in operation at the Diamond Light Source (DLS). It is an array of eight Schottky barrier diodes (SBDs) each with a distinct frequency band covering 33-1000 GHz. The aim of the spectrometer is to observe the bursts of coherent synchrotron radiation (CSR) as a result of micro-bunching instabilities (MBI) and stable low alpha modes, where alpha is the momentum compaction factor. In this case, the bursts of CSR occur with wavelengths in the mm regime. SBDs are often implemented as detectors in the millimetre wavelength range and benefit from low noise, excellent sensitivity and ultra-fast responses. The eight SBDs have been individually characterised thus making the results obtained comparable to simulations. Here we present, an analysis of the data obtained via the spectrometer in particular, the bursting nature and spectral characteristics of a sample of beam modes at DLS. Furthermore, the results obtained can be used to confirm simulations. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMR045 | High Resolution and Dynamic Range Characterisation of Beam Imaging Systems | 354 |
|
||
Funding: Work supported by the EU under grant agreement 624890 and the STFC Cockcroft Institute core grant ST/G008248/1. Any imaging system requires the use of various optical components to transfer the light from the source, e.g. optical radiation generated by a charged particle beam, to the sensor. The impact of the transfer optics on the image resolution is often not well known. To improve this situation, the point spread function (PSF) of the optical system must be measured, preferably, with high dynamic range. For this purpose we have created an intense, small (~ 1 μm) point source using a high quality laser and special focusing optics; and introduced a digital micro-mirror array in the optical system to substantially increase its dynamic range. The PSFs of optical systems that are currently being developed for high resolution, high dynamic range beam imaging using optical transition and diffraction radiation are measured and compared to Zemax simulations. The goal of these studies is to systematically understand and mitigate any ill effects on the PSF due to aberrations, diffraction and misalignment of the components of the imaging system. We present the results of our measurements and simulations. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |