Paper |
Title |
Page |
THPMY011 |
Chamber Upgrade for EPU48 in TPS |
3676 |
|
- I.C. Sheng, C.K. Chan, C.-C. Chang, C.M. Cheng, Y.T. Cheng, J. -Y. Chuang, Y.M. Hsiao, Y.T. Huang, C. Shueh, L.H. Wu, I.C. Yang
NSRRC, Hsinchu, Taiwan
|
|
|
Due to high total power and power density in Taiwan Photon Source (TPS) of EPU48 (Elliptical Polarized Undulator) in double minimum sector, we fabricate a new Aluminum vacuum chamber to increase sufficient room for synchrotron radiation to pass through without damage the storage ring chamber. A new method of in-site replacement of bending chamber is also presented, the result of this replacement procedure shows that it is very cost-effective as well as good UHV vacuum quality.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPMY014 |
Study of the Non-evaporable Ti-Zr-V Films Grown on Different Materials |
3682 |
|
- L.H. Wu, C.M. Cheng, Y.T. Huang, S.Y. Perng, I.C. Sheng, C. Shueh
NSRRC, Hsinchu, Taiwan
|
|
|
The non-evaporable (NEG) Ti-Zr-V films were coated on the different vacuum-chamber materials, including the extruded aluminum samples (Al), the extruded seamless stainless steel samples (S.S.), CuCrZr alloys, and oxygen-free copper (OFC) plates. The NEG films were fabricated by using the direct current (DC) sputtering method. The secondary electron microscopy images showed that the morphology of NEG films was different on these various substrates. The thermal analysis (TA) presented that exothermic reaction happened by heating the samples.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPMY015 |
Measurement of the Pressure in the TPS Booster Ring |
3685 |
|
- C.M. Cheng, C.K. Chan, G.-Y. Hsiung, Y.T. Huang, I.C. Sheng, L.H. Wu, I.C. Yang
NSRRC, Hsinchu, Taiwan
|
|
|
The booster ring of Taiwan Photon Source (TPS) is designed to provide full energy injection 3 GeV ramped up from 150 MeV with a small beam emittance. It is a synchrotron accelerator of circumference 496.8 m. The vacuum chamber through the magnets is made of thin stainless-steel tube extruded to an elliptical cross section of inner diameters 35 mm and 20 mm, and thickness 0.7 mm. The other chambers have standard 35CF round tube. The vacuum system was baked in the first installation. Because the residual stress of the stainless-steel elliptical tubing caused the magnetic field to become unstable, all elliptical tubing was removed for annealing to proceed, and reinstalled without baking. The ultimate pressure and data for the residual gas are shown as follows.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|