Paper | Title | Page |
---|---|---|
MOPMW028 | Progress on the MICE RF Module at LBNL | 454 |
|
||
The international Muon Ionization Cooling Experiment aims to demonstrate the transverse cooling of a muon beam by ionization in energy absorbers. The final MICE cooling channel configuration has two RF modules, each housing a 201 MHz RF cavity used to compensate the longitudinal energy loss in the absorbers. The assembly of MICE RF Module is being carried out at LBL. In this paper we will report the recent progress on the assembly work. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMB053 | nuSTORM FFAG Decay Ring | 3369 |
|
||
The neutrino beam produced from muons decaying in a storage ring would be an ideal tool for precise neutrino cross section measurements and search for sterile neutrinos due to its precisely known flavour content and spectrum. In the proposed nuSTORM facility pions would be directly injected into a racetrack storage ring, where circulating muon beam would be captured. The storage ring has two options: a FODO solution with large aperture quadrupoles and a racetrack FFAG (Fixed Field Alternating Gradient) using the recent developments in FFAGs. Machine parameters, linear optics design and beam dynamics are discussed in this paper. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMB054 | FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line | 3372 |
|
||
The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMB055 | A FODO Beam Line Design for nuPIL | 3375 |
|
||
Funding: Fermi National Accelerator Laboratory The Fermilab Deep Underground Neutrino Experiment (DUNE) was proposed to determine the neutrino mass hierarchy and demonstrate leptonic CP violation. The current design of the facility that produces the neutrino beam (LBNF) uses magnetic horns to collect pions and a decay pipe to allow them to decay. In this paper, a design of a possible alternative for the conventional neutrino beam in LBNF is presented. In this design, a FODO magnet beam line is used to collect the pions from the downstream face of a horn, bend them by ∼ 5.8 degrees and then transport them in a straight beam line where they decay to produce neutrinos. The idea of using neutrinos from the PIon beam Line (nuPIL) provides flavor-pure neutrino beams that can be well understood by implementing standard beam measurement technology. The neutrino flux and the resulting δCP sensitivity from the FODO nuPIL are also presented in the paper. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |