Author: Bailey, I.R.
Paper Title Page
WEPMW001 End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab 2408
 
  • M. Korostelev, I.R. Bailey, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • A. Herrod, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • J.P. Morgan
    Fermilab, Batavia, Illinois, USA
  • W. Morse, D. Stratakis, V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay, collimation (with accurate representation of all apertures) and spin tracking.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY020 Compact Accelerator Based Neutron Source for 99mTc Production 1946
 
  • R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • H.L. Owen
    UMAN, Manchester, United Kingdom
 
  Funding: The authors would like to thank STFC UK for their support of this work
The radioisotope Technetium-99m (99mTc) is used in 85\% of all nuclear medicine procedures. 99mTc is produced from its precursor Molybdenum-99 (99Mo), which until recently was produced in only five research reactors worldwide. Recently a number of accelerator-based methods have been proposed to fill this gap and to diversify this supply chain. In the paper we present our base compact (4 m) 10 mA 3.5 MeV accelerator design, to generate low-energy neutrons via fusion. In this design we increase neutron capture with a novel moderator assembly to shift the neutron spectrum into the epithermal resonance region of the 98Mo capture cross-section to create 99Mo. In this paper we examine Li(p, n) reactions for neutron production. Specifically focused on a numerical studies for an optimised target design capable of handling the heat load.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)