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Free Electron Oscillator

Ef = TreL(E;)

Ef = TOpticsTFEL (E;)

Electron bunches in

/'

Ef = TOptics (E;)

K.-J. Kim, Y. V. Shvyd’ko. Tunable optical cavity for an x-
ray free-electron-laser oscillator, Phys. Rev. Special Topics -
Accelerators and Beams, (2009).
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Focal Iength f

FEL radiation from undulator is sent back to
interact with fresh electron bunch.

Over many such interactions,

Longitudinal coherence of radiation is Many passes needed. _
dramatically improved. How to speed up modelling? _
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One would simulate with
Genesis+SRW




How does one propagate radiation wavefronts?

For simplicity, we consider separable solutions:
E(x,y;z) = EoEx(x; 2)Ey(y; 2)

Free space propagation in paraxial approximation:

OE 0°E OE
V2E +2ik— =0 —— < 2ik—
0z 072 0z
(paraxial Helmholtz eqn)
(e
E(x;z+1) = ~ E(x";2)e dx’ Fresnel propagator

E@;z+1) = E(6, z)ebf”(l %)
N

Angular representation: Fourier optics propagation through
all optical elements. Drift, crystal, lens,
1 2ri t
E(0) = —/ E(x)e~ "7 %*dx U
Va
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Wigner function representation and propagation (1)

W(x,9)=lfooE (x——)E(x+ )e A

A

o

We normalize the wavefronts:

/m /°° W(x, 0)dxdd = 1 [: E*(x)E(x)dx =1

/ ) E*(Q)E(0)d = 1

¢9d¢

= f / x*W(x, 6)dxd6
= / / 6°W(x, 6)dxd6
= / / x0W (x, 6)dxdo

This is analogous to quantum mechanics, but

R — A

/ " x2E*(x)E(x)dx
/ " 6°E*(0)E(6)do

Requires calc of angular

E*(x)E(0) = 1 /00 W (f 9) Zx0 g representation
AJ o 2’
Partial coherence included by a convolution
Reconstruct E field in coherent case with incoherent source
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Wigner function representation and propagation (2)

H(x,0;2)

Evolution under oW (x, )
a general Hamiltonian 8z (W, H].

(Note that we ignore absorption in

Movyal Bracket this formulation.)

[f. gl = .i(f*g—g*f)
i

#(8.30-9075)

/ x=e To first order...
A
Moyal Star x =1+ % ((8_;9)9 = ((9_93x) + O(/‘IZ)
Consider quadratic Hamiltonian H = ESijjZk

Then, Moyal bracket reduces to Poisson bracket and evolution is that of classical
Mechanics!

e —
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Wigner function representation and propagation (3)

Thus, evolution under a (z-dependent) quadratic Hamiltonian is

that of classical mechanics.

=i i=(})

Linear map
Wi (2) = Wi(MZ)
Gaussian _ AT
Wigner function zf - leM

Classical evolution!
-linear transport

Only need moments!

e —
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Transfer Matrix Calculation

Compute transfer matrix for |
4 crystal beamline

M, = (1 1) Ideal lens
0 1/ Focal length f

1 O
My = -1
f

ignore crystals!
--treat absorption independently

Mr = MgMiMy
1-% 21-F
= _lf B z
f f
In case where f= l/z My = (_; 01)
-

Can also compute in Ray tracing code like SHADOW!

e —
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Gaussian results in SRW vs. analytical moment
calculation
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Crystals result in 96% transmission
o  [f Ir(x, y)dxdy Speed increase = 608

R=-L =
O, ffI,-(x, y)dxdy
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Non-Gaussian Wigner Function propagation

\/zx . kx2

—1
Hermite-Gauss modes: E..(x) = EomHp m e 2@
\ Complex beam
ter
Hy(x) = 1 parame
H (x) =x T Gaussian
Consider mx=2, my=0 H,(x) = 4x2-1

Intensity at Waist 1lel6 Intensity after propagation 1e16
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SRW propagation through 1:1 recirculation FELO beamline
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Non-Gaussian Wigner Function propagation

SRW propagation Map method

Map Method and SRW Intensity After Propagation
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43 seconds for SRW

38 seconds for map method

Good agreement between SRW and
Map propagated electric fields
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Conclusions and future work

We have demonstrated the use of transfer matrices for radiation
Propagation in an FEL Oscillator beamline and cross checked against
SRW simulations.

For Gaussian wavefronts, only moments are necessary. Moment
Transport faster than SRW Gaussian propagation by ~ 600 !!

For non-Gaussian wavefronts, we computed the numerical Wigner function

and propagated it with the transfer matrix. We found agreement with SRW
result. As implemented, the two methods have comparable speed. Map method
could be sped up and is expected to be faster for longer beamlines.

In progress/next steps:
Fast FEL calculation
4-D Wigner function
Compute matrix from general beamline with ray tracing code
polarization
partial coherence (no change to map method)
treatment of apertures and other nonlinear elements
Apply this to synchrotron light source beamlines
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Thanks for your attention!!

e —
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Extra Slides



Gaussian Wigner function evolution

le at Waist
40005

300404 2.00+04 1.00+04 0.00400 100404 200404 300+04

@ !

s
0¢0%300+08 206404 -10e+04

radiasoft

125

100

075

050

025

40605

175
30605

150
20005

125
10605

1.00
% 0.0e400 |

075
10605

0350
2.00.05]

025
-3.0005

0.00

[b] 300404 200404 -10e+04 00e+00  10e+04  20e+04  3.0e+08
a

Deposited onto Original Grid

150
125
100
075
0.50
025

0.00

00e+00  10e+04  20e+04  3.0e+04
a

23 October 2018

Map Method and SRW Intensity After Propagation
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Parameters

We have set up the four crystal beamline as described in
reference [4]. Note however that we’ve used even simpler
optics, with just a single ideal lens, located at the midpoint
of the beamline. See Fig. 1 for the schematic. The param-
eters used for this example calculation are as follows. The
undulator length, L, is 10 meters. The total length, L, is
100 meters. The crystal diffraction angle, 6, is 7/8. The
length of the lower leg of the beamline, S, is 3 meters. The
other parameters are then determined by geometric relations
and are as follows. L; and Lg are 45.0 meters. L, and Ls
are 72.8 meters. L3 and L4 are 1.5 meters. The distance
between the two legs of the beamline, G, is 51.5 meters.

The reflecting crystals were chosen to be diamond with a d-
spacing of 0.892 A. The crystal thickness was 10 millimeters.
The real and imaginary parts of the 0-th Fourier component
of crystal polarizability were -0.217x10~% and 0.280x 10~/
respectively. The real and imaginary parts of the next Fourier
component of crystal polarizability was —0.544 x 10~ and
0.259 x 1077 respectively.
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