

Computation of Eigenmodes in Long and Complex Accelerating Structures by means of Concatenation Strategies

<u>Thomas Flisgen</u>, Adolfo Vélez Helmholtz-Zentrum Berlin

Johann Heller, Shahnam Gorgi Zadeh, and Ursula van Rienen
University of Rostock

13th International Computational Accelerator Physics Conference

Key West, Florida, USA, 20th – 24th of October 2018

INTRODUCTION AND MOTIVATION

INTERACTION OF MODES IN ACCELERATING STRUCTURES WITH CHARGED PARTICLES

Interaction between modes and charged particles quantified by the coupling impedance:

$$\frac{R_i}{Q_i} = \frac{1}{\omega_i W_i} \left| \int E_{z,i}(0,0,z) \exp(j\omega_i z/c_0) dz \right|^2$$

 $\mathbf{E}_i(\mathbf{r})$: electric field strength

 ω_i : angular frequency

 c_0 : speed of light

 $\partial oldsymbol{\Omega}_{ ext{PEC}}$: perfect electric conducting boundary

 W_i : energy stored $\partial \Omega_{\mathrm{PMC}}$: perfect magnetic conducting boundary

EXAMPLE: RF PROPERTIES OF CHAIN OF 3.9 GHZ RESONATORS IN FLASH / XFEL

- higher order modes are not required to be confined in the individual resonators
- consideration of entire cavity chain for a reasonable RF analysis is needed

COMPLEXITY OF DIRECT COMPUTATIONS

Adapted from Liling Xiao, Lixin Ge, Kwok Ko, Kihwan Lee, Zenghai Li, Cho-Kuen Ng: "Superconducting Cavity Imperfection Study for Project X Linac Using ACE3P", ComPASS All-Hands Meeting LBNL, Sept. 27 -28, 2012 und Kwok Ko et. al: "Advances in Parallel Electromagnetic Code for Accelerator Science and Development", Proceedings of the Linear Accelerator Conference 2010, pp. 1028 - 1032, Tsukuba, Japan 2010

COMPLEXITY OF DIRECT COMPUTATIONS

Adapted from Liling Xiao, Lixin Ge, Kwok Ko, Kihwan Lee, Zenghai Li, Cho-Kuen Ng: "Superconducting Cavity Imperfection Study for Project X Linac Using ACE3P", ComPASS All-Hands Meeting LBNL, Sept. 27 -28, 2012 und Kwok Ko et. al: "Advances in Parallel Electromagnetic Code for Accelerator Science and Development", Proceedings of the Linear Accelerator Conference 2010, pp. 1028 - 1032, Tsukuba, Japan 2010

COMPLEMENTARY APPROACH: <u>STATE-SPACE COMPUTATIONS*</u>

1. Decomposition of the Structure at Regions of Constant Cross Section

Important properties:

- (numerical) treatment of segments is computationally less demanding
- single treatment of identical segments
- segments with simple geometry can be treated semi-analytically, which is very fast
- employment of symmetry of segments is feasible

2. Consideration of Segments as Blocks with Terminals

E-field of first three 2D port modes

- Modal voltages $\,v_{r,p,m}(t)\,$ correspond to tangential electric fields of 2D port modes
- Modal currents $\;i_{r,p,m}(t)\;$ correspond to tangential magnetic fields of 2D port modes

3. Generation of Second-Order State-Space Equations for Segments

4. Model-Order Reduction for State-Space Systems

$$\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}\mathbf{x}_{r}(t) = \mathbf{A}_{r}\mathbf{x}_{r}(t) + \mathbf{B}_{r}\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{i}_{r}(t)$$

$$\mathbf{v}_{r}(t) = \mathbf{B}_{r}^{\mathrm{T}}\mathbf{x}_{r}(t)$$

$$\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}\mathbf{x}_{\mathrm{rd},r}(t) = \underbrace{\mathbf{W}_{r}^{\mathrm{T}}\mathbf{A}_{r}\mathbf{W}_{r}}_{\mathbf{A}_{\mathrm{rd},r}}\mathbf{x}_{\mathrm{rd},r}(t) + \underbrace{\mathbf{W}_{r}^{\mathrm{T}}\mathbf{B}_{r}}_{\mathbf{B}_{\mathrm{rd},r}}\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{i}_{r}(t)$$

$$\mathbf{v}_{r}(t) = \underbrace{\mathbf{B}_{r}^{\mathrm{T}}\mathbf{W}_{r}}_{\mathbf{A}_{\mathrm{rd},r}}\mathbf{x}_{\mathrm{rd},r}(t)$$

$$\mathbf{x}_{r}(t) = \mathbf{W}_{r} \cdot \mathbf{x}_{\mathrm{rd},r}(t)$$

state vector: $\mathbf{x}_r(t) \in \mathbb{R}^{N_{\mathrm{s}}}, N_{\mathrm{s}} \approx 10^5$

orthogonal projection matrix: $\mathbf{W}_r \in \mathbb{R}^{N_{\mathrm{s}} imes N_{\mathrm{srd}}}, \mathbf{W}_r^{\mathrm{T}} \mathbf{W}_r = \mathbf{I}$

reduced state vector: $\mathbf{x}_{\mathrm{rd},r}(t) \in \mathbb{R}^{N_{\mathrm{srd}}}, N_{\mathrm{srd}} < 10^2$

5. Concatenation of Reduced-Order State-Space System (SSC)

- Arbitrary topologies and number of 2D port modes supported

6. Computation of RF Properties by Means of the Reduced-Order Model

6. Computation of RF Properties by Means of the Reduced-Order Model

10	/22	Tue

11:00	12:30	Session 1, Grand Ballroom		
11:00	11:30	(I) Van Beeumen, Roel	LBNL	Parallel algorithms for solving nonlinear eigenvalue problems in accelerator cavity
				<u>simulations</u>
11:30	12:00	(I) Pommerenke, Hermann	U Rostock	Efficient computation of lossy higher order modes in complex SRF cavities using reduced
				order models and nonlinear eigenvalue problem algorithms
12:00	12:15	De Gersem, Herbert	TU Darmstadt	Uncertainty quantification for the fundamental mode spectrum of the European XFEL
				Cavities
12:15	12:30	Fedurin, Mikhail	BNL	Electron beam longitudinal phase space restoration from the image after beam pass
				deflector cavity and spectrometer arm

external quality factors

APPLICATION EXAMPLE: EIGENMODE COMPENDIUM OF THE BESSY VSR COLD CHAIN

UPGRADE OF BESSY II TO BESSY VARIABLE PULSE LENGTH STORAGE RING

DECOMPOSITION OF THE CHAIN INTO SEGMENTS

MODAL ATLAS FOR THE COLD STRING GENERATED WITH SSC

- computed 1,564 eigenmodes in the interval 0.5 GHz to 3.6 GHz
- assembled a modal compendium for the chain with resonant frequency, geometric impedance, and electric field distribution for each mode

COUPLING IMPEDANCES OF MODES IN THE CHAIN

FIELD DISTRIBUTIONS OF MODE 888 - DIRECT ON TET VS. SSC ON HEX

x-cutplane

y-cutplane

Artificially enhanced waveguides by

$$\Delta z = \frac{1}{4} \frac{c_0}{\sqrt{f_{888}^2 - f_{co}^2}}$$

to model a PMC condition at black line

- 218,444 tetrahedrons
- searched for 10 modes with frequencies larger than 2.98 GHz
- $T_{comp} = 13 \text{ min}$

FIELD DISTRIBUTIONS OF MODE 888 – DIRECT ON TET VS. SSC ON HEX (CONT.)

- results agree reasonably well
- differences are attributed to the different meshes (TET vs. HEX)
 and the different approaches (direct vs. SSC)

EXTERNAL QUALITY FACTORS BASED ON REFLECTIONS AT THE FPC

SETUP OF THE STUDY

Change of matching impedances at the fundamental input couplers while terminations at all other terminals remain untouched (=matched).

SENSITIVE MODES WITH COMPARABLY LARGE EXTERNAL Q

SUMMARY

- SSC allows for solving large scale problems without using high performance computers
- The complexity of the field problem is reduced by decomposition and model order reduction
- It is not sufficient to exclusively focus on the cavitiy as relevant modes be localized along the chain or along parts of it or between cavites
- Comparison with a direct computation shows very good agreement in the resonant frequency and reasonable agreement in the R/Q
- Further comparisons of SSC with direct computations are available in the literature
- SSC is very flexible and e.g. allows for perturbation approaches

