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Abstract

SixTrack is a single-particle tracking code for high-energy
circular accelerators routinely used at CERN for the Large
Hadron Collider (LHC), its luminosity upgrade (HL-LHC),
the Future Circular Collider (FCC), and the Super Proton
Synchrotron (SPS) simulations. The code is based on a 6D
symplectic tracking engine, which is optimised for long-term
tracking simulations and delivers fully reproducible results
on several platforms. It also includes multiple scattering en-
gines for beam-matter interaction studies, as well as facilities
to run integrated simulations with FLUKA and GEANT4.
These features differentiate SixTrack from general-purpose,
optics-design software like MAD-X. The code recently un-
derwent a major restructuring to merge advanced features
into a single branch, such as multiple ion species, inter-
face with external codes, and high-performance input/output
(XRootD, HDF5). This restructuring also removed a large
number of build flags, instead enabling/disabling the func-
tionality at run-time. In the process, the code was moved
from Fortran 77 to Fortran 2018 standard, also allowing
and achieving a better modularization. Physics models
(beam-beam effects, RF-multipoles, current carrying wires,
solenoid, and electron lenses) and methods (symplecticity
check) have also been reviewed and refined to offer more
accurate results. The SixDesk runtime environment al-
lows the user to manage the large batches of simulations
required for accurate predictions of the dynamic aperture.
SixDesk supports CERN LSF and HTCondor batch systems,
as well as the BOINC infrastructure in the framework of the
LHC@Home volunteering computing project. SixTrackLib
is a new library aimed at providing a portable and flexible
tracking engine for single- and multi-particle problems us-
ing the models and formalism of SixTrack. The tracking
routines are implemented in a parametrized C code that is
specialised to run vectorized in CPUs and GPUs, by us-
ing SIMD intrinsics, OpenCL 1.2, and CUDA technologies.
This contribution presents the status of the code and an
outlook on future developments of SixTrack, SixDesk, and
SixTrackLib.
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‡ Work supported by Google Summer of Code 2018

INTRODUCTION
SixTrack [1,2] is a 6D single-particle symplectic tracking

code able to compute the trajectories of individual relativis-
tic charged particles in circular accelerators for studying
dynamic aperture (DA) or evaluating the performance of
beam-intercepting devices like collimators [3]. It can com-
pute linear and non-linear optics functions, time-dependent
effects, and extract indicators of chaos from tracking data.
SixTrack implements scattering routines and aperture cal-
culations to compute “loss maps”, i.e., leakage from colli-
mators as a function of longitudinal position along the ring,
and collimation efficiency [4].

Different from a general-purpose code like MAD-X [5,6],
SixTrack is optimised for speed and numerical reproducibil-
ity. It can be also linked with the BOINC library to use the
volunteering computing project LHC@Home [7]. SixTrack
studies, such as estimation of dynamic aperture of large
storage rings like the Large Hadron Collider (LHC) or the
Future Circular Collider (FCC), require massive computing
resources, since they consist of scans over large parame-
ter spaces for probing non-linear beam dynamics over long
periods.

The SixDesk runtime environment manages SixTrack sim-
ulations from input generation, job queue management (us-
ing HTCondor or LSF in the CERN BATCH service and
customised software in CERN Boinc server), to collecting
and post-processing results.

SixTrackLib is a new library built from scratch in C with
the main aim of offering a portable tracking engine for other
codes and offloading SixTrack simulation to GPUs.

This paper summarises the main existing features of Six-
Track, SixDesk and SixTrackLib and provide detail about
the main development lines.

MAIN FEATURES
SixTrack tracks an ensemble of particles defined by a set

of coordinates through several beam-line elements, using
symplectic maps [8–10], or scattering elements.

Coordinates
The set of coordinates is larger than the minimum needed

to describe the motion. Additional variables are used to
store energy-related quantities used in the tracking maps
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that are updated only on energy changes, which does not
occur very frequently in synchrotrons in absence of radiation
effects, to save computational time. Thick maps for dipole
and quadrupoles also reuse the energy-dependent factors of
the first- and second-order polynomial of the map that are
recalculated at each energy change. Furthermore, different
ion species, such as debris from interaction with matter, can
be tracked at the same time using an extension of the usual
symplectic formalism [11].

Variables used internally in tracking are not canonical,
however, once they are converted to canonical form, the
maps are symplectic. Different from other codes, SixTrack
uses

σ = s − β0ct

as the longitudinal coordinate during tracking to avoid round-
ing errors associated to the relativistic β when updating time
delays in drifts and(

ζ =
β

β0
σ, δ =

P − P0
P0

)
as conjugate canonical variables in 6D optics calculations
which use explicitly symplectic maps.

Beam-line Elements
Table 1 shows the different types of beam-line elements

implemented in SixTrack. Thin multipoles are used in con-
junction with the MAKETHIN and SIXTRACK commands in
MAD-X to implement symplectic integrators of thick maps.
Thin multipoles include the effect of the curvature, when
present, up to the second order. The tracking maps have
been recently reviewed and benchmarked against MAD-X
and its optics module for consistency.

Table 1: Physical Elements Implemented in SixTrack

Drift expanded Drift exact [12]
Single thin multipole Thin multiple block
Thick dipole-quadrupole Thin solenoid
Accelerating cavities RF-multipoles [13]
4D Beam-beam 6D beam-beam [14]
Wire [15] Hollow electron lens [16, 17]

Scattering
SixTrack embeds the K2 scattering engine [18, 19], capa-

ble of simulating the basic scattering processes undergone
by an ultra-relativistic proton in the multi-TeV range when
passing through matter. The simulated processes range from
ionisation energy loss and multiple Coulomb scattering to
point-wise interactions like Coulomb, elastic, and inelastic
events, including single diffractive scattering. Compound
materials of interest for the low-impedance upgrade of the
LHC collimators are implemented via averaged nuclear and
atomic properties [20]. Other scattering models can be im-
ported and made available in the SixTrack executable, such
as that of Merlin [21] and Geant4 [22, 23].

A new scatter block is under development to offer a gen-
eral framework for simulating scattering events in SixTrack.
Currently, it supports beam scattering against a target speci-
fied as an area density distribution at a thin marker inserted
into the lattice. Internally, the scattering module supports
elastic scattering through Monte Carlo sampling of exper-
imental data from Totem. Alternatively, scattering events
can be generated on the fly by Pythia8 [24], in which case
elastic and diffractive processes are supported.

Optics Calculations
SixTrack contains matrix code for 5D optics calculation

and a 6D tracking engine using Truncated Power Series Al-
gebra library (TPSA [25]) for 6D optics calculation. The
6D tracking engine uses canonical variables and it pro-
vides a cross-check of the symplecticity of the one-turn-map.
Coupled Twiss parameters (using the Mais-Ripken formal-
ism [26]) can be extracted along the lattice. The optics
parameters are optionally used in the beam-beam elements
for self-consistent simulations. The 6D optics module has
been recently improved by removing some unnecessary ultra-
relativistic approximations which introduced small symplec-
tic errors.

Dynamic Effects
A general functionality for dynamically-changing sim-

ulation settings on a turn-by-turn basis has been imple-
mented [27,28]. This allows setting magnet strengths includ-
ing multipoles, RF amplitude and phase, reference energy,
and beam-beam element as a function of turn number. This
can be useful for a number of different studies, e.g. magnet
snap-back in the LHC [29], HL-LHC crab cavity failure
scenarios [30–32], studies of beam losses during energy
ramp [33], and hollow electron-lens modulation [34]. The
settings can be internally computed as a function of turn
number, or loaded from a file. These functions are specified
using a flexible language that allows combining functions to
achieve the required effect. The architecture of the function-
ality makes it easy to add support for new elements or new
functions.

Post Processing
Long-term tracking with SixTrack is used extensively at

CERN for studying the DA, with a typical study consisting
of up to ∼ 2 × 106 individual tracking simulations over
105 − 106 turns (see Figure 1 for an example).

Tracking data are post processed during the study and
summary files, containing the main results of the simulation
for each initial condition, are returned back to the user. In
particular, tracking summary files for each initial condition
identify particle loss/survival, final surviving turn numbers
and the inferred particle amplitudes.

Particle’s invariants are calculated for each initial condi-
tion and based on the average invariant over a user-defined
range of turns. An initial estimate of the invariant is obtained
by assuming no coupling between the planes of motion, via
the usual relation for the Courant-Snyder ellipse, e.g. for the
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Figure 1: Survival plot of a fine phase-space scan for the
LHC. The simulations was divided in task of 60 particles
pairs covering the phase space in 2σ and 1.5◦ steps.

horizontal plane. Alternatively, an estimate of the decou-
pled single-particle emittance for the three oscillation modes
can be calculated from the eigenvectors of the motion (v̄),
which may be constructed from the one-turn map, see for
example [26]. Various parameters relevant to the nonlinear
motion, such as smear and detuning, are also evaluated.

In addition to quantities relevant to particle survival, es-
timates of the long-term stability are obtained through a
Lyapunov-like analysis performed by examining the phase-
space separation of initially close by particle pairs. In partic-
ular, the angular separation in phase for the three oscillation
modes

1
π

√
∆φ2

1 + ∆φ
2
2 + ∆φ

2
3

N
,

where N = (1,2,3) for (2D,4D,6D) motion, respectively, is
considered. Linear fits to the logarithm of the separation as
function of the logarithm of the turn number identify the
maximum separation rate between each particle pair. This
quantity is returned, along with the maximum separation
in phase, to provide approximate indicators of the onset of
chaotic motion in place of the far more computationally
intensive Lyapunov exponents [35, 36].

Summary files for the outcome of each initial condition are
collectively post-processed by the user using external tools,
in order to identify minimum boundaries in the (σx, σy)

space for particle survival over the tracked number of turns,
as well as to study the evolution of DA as a function of the
turn number.

Frequency Analysis
A collection of routines for frequency analysis has been

linked in SixTrack, namely PLATO [37] and a C++ imple-
mentation of the Numerical Analysis of Fundamental Fre-
quency (NAFF) algorithm has been developed [38]. These
algorithms allow for a more refined, compared to plain FFT,

tune determination with a much faster convergence, i.e. re-
quiring a shorter number of turns. By comparing the tune
determination at different time intervals, diffusive frequency
maps can be been computed [39]. With the resolution of the
frequency map, resonance lines become visible, even in the
case of a tune modulation from a quadrupolar ripple (the
triplets in IR1 and 5) with frequency of 550 Hz and relative
amplitude of 10−7, as shown in Figure 2.

Input and Output
Initial conditions can be given in amplitude steps or taken

from an external file. A dump module offers multiple ways
to extract tracking data both in terms of type observable
(physical coordinates, canonical coordinates, normalised
coordinates, averages and first order distribution momenta)
in a selection of turns and observation points. Data are
written in ASCII and, in a few cases, a binary option is
also available. Support for output of simulation data to
a HDF5 [40] files and ROOT [41] is also currently being
developed.

Furthermore, it is planned to develop a new way to gener-
ate the distribution that is used as initial conditions for track-
ing. This will provide the functionality to create matched or
mismatched distributions in both physical and normalised
coordinates.

Interfaces to External Programs
Collimation studies can also be performed running Six-

Track coupled [42] to Fluka [43,44]. In this configuration,
the two codes exchange particles at run time, with the aim
of combining the refined tracking through the accelerator
lattice, performed by SixTrack, with the detailed scattering
models, implemented in Fluka, when the beam reaches in-
tercepting devices. The use in the Fluka-SixTrack coupling
of the same Fluka geometries used for subsequent energy-
deposition calculations run with Fluka allows an excellent
level of consistency of results.

Additionally, a more generalised interface “BDEX” for
interfacing external codes is also included, enabling for ex-
ample tracking of multiple bunches or coupling to cavity
simulation codes. Here, the exact protocol can be imple-
mented as a plug-in to SixTrack [45].

Building and Testing
A CMake-based build and test system has recently been

added [45]. This greatly simplified the maintenance of the
dependencies between the various build options, as well
as the setup for building on the large range of supported
platforms.

The testing framework CTest is also provided as part of
CMake. For SixTrack, this is used to verify that the executa-
bles are still providing the expected output after the code
has been modified, and to track the changes to the output.
Furthermore, it is used for checking that the results from
versions compiled for different platforms are in agreement,
which is vital for BOINC. The main benefit of using CTest
is that test running is fully automatic and gives a simple
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Figure 2: Frequency map using the NAFF method for LHC in the presence of a tune modulation.

pass/fail output, which is also integrated with GitHub for
pull requests.

Performance

Thanks to the recent re-factoring, the internal particles
arrays are fully dynamic, therefore the number of particles
that can be tracked in parallel is limited by the system mem-
ory and not by a build-time flag. A machine model like the
LHC, using about 18k elements and 4.6k high-order mul-
tipole blocks, needs about 220 µs per particle per turn on a
single CPU core at 3.4 GHz. Typical studies requires of the
order of 109–1012 particle turns and even more for parameter
scans. For this reason, SixTrack is often used in conjunction
with high-performance computing facilities described in the
following section.

RUNTIME ENVIRONMENTS

The SixDesk environment [46] is the simulation frame-
work used to manage and control the large amount of in-
formation necessary for, and produced by, SixTrack studies
of dynamic aperture. It supports CERN batch systems [47]
as well as the BOINC platform for volunteering computing
available at the LHC@Home project [7]. The SixDeskDB
post-processing tool collects data from SixDesk, performs
post-processing analysis, and prepares reports and plots.
It also offers a Python API for interactive analysis. Simi-
larly to the SixTrack code, the SixDesk environment and
SixDeskDB are continuously updated, extending the cover-
age of the studies and keeping the environment up to date
with the latest developments in the CERN IT infrastructure.

LHC@Home and the CERN Batch System

Volunteer computing has been used successfully at CERN
since 2004 with the LHC@Home project; it has provided
additional computing power for CPU-intensive applications
with small data sets, as well as an outreach channel for CERN
activities. LHC@Home started off with SixTrack, which had
been successively ported from mainframe to supercomputer
to emulator farms and PCs. In order to run on the largest
number of volunteer computers, SixTrack is compiled for
the most common operating systems, architectures, and CPU
instruction sets.

In terms of computing power provided by the volunteers to
LHC@home, the system is capable of handling 1×105 tasks
on average, with peaks of 3.5 × 105 tasks simultaneously
running on 2.4×104 hosts observed during SixTrack intense
simulation campaigns (see Figure 3). Every SixTrack task
is run twice to eliminate random host errors and minimise
the impact of a failing host. The LHC@Home capacity
available for SixTrack can be compared to the average of
2.5 × 105 running tasks on 1.4 × 105 processor cores in the
CERN computer centre, which is fully loaded with tasks
from analysis and reconstruction of collisions recorded by
LHC experiments, and has limited spare capacity for beam
dynamics simulations.

The CERN batch system is presently managed by means
of the HTCondor [48] package. Contrary to BOINC, most
suitable for a steady stream of work units, the CERN batch
system provides users with a responsive computing resource.
Also, contrary to LHC@Home, no redundancy is imple-
mented during task submission since the code run in a con-
trolled environment, although very rarely hardware errors
do appear in the results.
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Figure 3: Summary of tasks and users during the last two years (upper frame: 2017; lower frame: 2018 to date) of the
SixTrack application in the LHC@Home project. The number of users tends to increase, with the number of tasks absorbing
most of the time all pending tasks.

Developments
One of the main development lines of SixDesk is porting

the collimation studies to the BOINC platform for volunteer
computing. This entailed a thorough revision of the collima-
tion part, currently on-going, to make results numerically
stable and reproducible across platforms. The possibility
to interrupt and restart the computation (check-point/restart
capability), which is essential to run on BOINC, is being
added as well.

Other lines of development include: the addition of new
parameters for dedicated scans of dynamic aperture; the pos-
sibility of running chains of jobs in BOINC, for simulating
extended periods of beam time in the ring; a pre-filtering
stage of submission to the CERN batch system prior to sub-
mission to BOINC, to avoid short tasks, with consequent
inefficient use of volunteer resources, like bandwidth and
time.

SixTrackLib
In the context of single-particle simulations, tracking re-

quires no interaction between the calculations carried out for
particle pi and pj,i from a set of N particles. The memory
requirements for representing each pi typically ranges from
101 to 103 Bytes. The machine description can, over a single
turn, be considered constant, although different elements
and sections of the ring require a different amount of local re-
sources. Still, SixTrack presents itself as an ideal candidate
for a parallel implementation: strongly CPU bound with in-
herent parallelism and resource requirements not inherently
scaling with the number of parallel processes.

Introducing parallelism into a mature code-base like Six-
Track, even from such a favourable starting point, is challeng-

ing. It entails a high levels of complexity due to competing
paradigms and concepts of parallel computing. In particu-
lar, a fast-changing technological landscape in combination
with a diverse, multi-vendor and long-tailed selection of
hardware available via initiatives like LHC@Home [7], as
well as the realities of limited development resources are
the main decision-making factors. These and other con-
straints motivated the design and ongoing development of a
new, stand-alone library providing the core functionality of
SixTrack.

SixTrackLib [49] is an open-source library developed
from scratch using C and C++, allowing users to off-load the
particle tracking onto supported HPC resources. As of this
writing, it provides a) a representation for a set of particles;
b) a set of beam-elements (drifts, multipoles, cavities, 4D
and 6D beam-beam elements, etc.); c) a set of maps describ-
ing the tracking of the particles over the beam-elements; d) a
dedicated generic buffer for managing and transferring data
to the computing nodes; e) implementations and abstractions
for different computing environments (auto-vectorized CPU
code, OpenCL [50], CUDA [51]); f) high-level APIs in C,
C++ and (under development) Python.

The chosen design allows for the complete separation of
business logic from the modelled physics, allowing the latter
to be shared across all architectures. Maps and tracking
functions are implemented in a sub-set of the C99 language,
in terms of the provided abstractions. The physics parts are
exposed to the user in a modular and header-only fashion,
allowing to tap into SixTrackLib under a wide-range of use
cases currently out of reach for a stand-alone application
such as SixTrack.
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First simulations and tests prove the feasibility of the ap-
proach and reproduce results delivered by SixTrack. Perfor-
mance analysis confirms that the main limiting factors for
performance and scalability are: a) the finite availability of
resources such as registers and high-bandwidth/low-latency
memory on computing nodes; b) the ability to compensate
for any occurring latencies by having enough parallel tasks
scheduled to prevent computing units from stalling or idling.

Consider for example the simulation of 1 ≤ N ≤ 107 par-
ticles on a lattice with 18657 beam-elements, representing
the LHC without beam-beam interactions. Evaluating Six-
TrackLib on a CPU-based OpenCL implementation (Intel
Xeon E5-2630 20x2.2 GHz hyper-threads) and a range of
high-end GPUs (NVIDIA Tesla V100 PCIe 16GB GPU)
as well as consumer-grade GPUs (NVIDIA GTX 1050Ti
4GB, AMD RX560 4GB) demonstrates parallel speed-ups
approaching (for large N) factors of 101 to and exceeding
102 (Fig. 4).

Figure 4: Benchmarking results of a LHC study using Six-
TrackLib on different target hardware. Increasing the com-
plexity of the parallel code by enabling beam-beam elements
(BB), but not using them, leads to decreased performance
on GPUs, but not on CPU-based systems.

While enabling code-paths for handling beam-beam in-
teractions in the parallel tracking code leads, unsurprisingly,
to virtually no change on CPU-based systems, the increased
complexity and pressure on resources impairs the perfor-
mance on all studied GPU systems (cf. results in Fig. 4
labelled with (BB)). On lattices actually featuring complex
features like beam-beam elements, this observation moti-
vates studying ways to split the monolithic parallel code into
smaller specialised blocks and to execute these blocks in
sequence, thereby trading in synchronisation and dispatch-
ing overheads for a potentially better utilisation of hardware
resources.

CONCLUSIONS
The SixTrack tracking code is the main code used to sim-

ulate long-term stability, collimation cleaning, and machine
failure scenarios in the LHC, SPS and FCC due its unique
features of speed and integration with HPC resources. It

comes with a fully developed running environment to per-
form easily the massive numerical simulations that include
scans on beam and ring parameters and the option of using
different computing resources, from standard batch services
to volunteer computing.

In spite of its maturity, SixTrack is still in an intense
development phase. On the short time scale, it is planned to
merge into a single code the features that were developed in
the framework of the studies of the LHC collimation system.
On a longer time scale, the main lines of development include
tighter integration of existing features, interoperability with
other codes, and deployment on new architectures such as
GPU.
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