Computational Needs for XFELs

Martin Dohlus DESY, Hamburg

TOC

about FELs physical challenges

accelerator and SASE FEL

accelerator

some effects

(CSR, μ-bunch instability, compression modes, noise- & parameter-sensitivity) **GUN to undulator tracking** (European XFEL, segmentation, codes) **Computational effort**

SASE FEL

usual approximations

SASE simulation

(European XFEL: influence of undulator wakes and tapering)

a tolerance study

(European XFEL: impact of undulator gap tolerance)

about FELs: SASE XFEL

what are the physical challenges?

resonance energy
$$\lambda_l = \frac{\lambda_u}{2p^2} \left(1 + \frac{K^2}{2}\right)$$

what are the physical challenges?

$\lambda_l = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$	$K \propto 1$ $\lambda_{\mu} \propto cm$	$\lambda_l \approx 10 \text{ nm} \rightarrow E \propto \text{GeV}$ FLASH 13nm@690MeV
•		$\lambda_l \approx 0.1 \mathrm{nm} \rightarrow E \propto 10 \mathrm{GeV}$
		LCLS 0.15nm@14GeV Europ. XFEL 0.1@17GeV
$L_{u} > L_{sat} \propto 10L_{g}$ $L_{g} \propto \sqrt[3]{\frac{2mc}{\mu_{0}e} \cdot \frac{\gamma^{3}\lambda_{u}}{K^{2}} \cdot \frac{\sigma_{r}^{2}}{\hat{I}}}$	∝ 100 m	undulator length FLASH ~ 30m LCLS ~ 120m Europ. XFEL ~ 200m
(1d theory) Current	$\hat{I} \approx 1 \cdots 10 \text{ kA}$	FLASH ~ 12 kA Europ. XFEL ~ 5 kA
	$\sigma_{r} \propto \sqrt{L_{g} \lambda_{l}}$	FLASH ~ 100μm LCLS, E-XFEL ~ 30μm
emittance	$\mathcal{E} < \frac{\lambda_l}{4\pi}$	normalized emittance $\mathcal{E}_n \approx 1 \mu m$
bandwidth \leftrightarrow energy spread	$\Delta E/E \propto \lambda_u/L_g$	FLASH, XFEL ~ 1 MeV

accelerator and SASE FEL

gun & injector

~ 50 A; ~ 130 MeV

bunch compression system

external fields (field stability) space charge effects coherent synchrotron radiation wakes

... CSR effects

CSR effects

radiation effects

overtaking long transients

shape variation

& space charge

µ-bunch "instability"

picture from Z. Huang, J.Wu: Microbunching instability due to bunch compression http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_38.pdf

impedances (steady state):

$$Z_{\rm SC} \propto i \frac{k}{\gamma^2} \ln \left(\frac{\gamma}{k\sigma_r} \right)$$
 "SC-instability"
(free space, $k\sigma_r/\gamma \ll 1$)
$$Z_{\rm CSR} \propto \sqrt[3]{\frac{k}{3iR_{curv}^2}}$$
 "CSR-instability"

gain curves of µ-bunch "instability"

non linear effects in long. phase space

numerical noise & µ-bunch "instability"

example: rollover compression in FLASH

red: SC calculation with good spatial resolution shot noise; wavelength ~ grid resolution → current with µ-structure blue: reduced resolution in tail

gun to undulator tracking

Address 🔕 http://www.desy.de/xfel-beam/

SA

*

European XFEL, segmentation

gun to undulator tracking : technical aspects

rf settings: phase and amplitude settings are very sensitive wakes & space charge effects change longitudinal profile significantly! → iterative optimization

matching: real artificial

steering

bunch: 1nC, ~50A (initial)

simulation: s2e particles (ASTRA-generator & gun simulation) $N_{s2e} \approx 200000$ try to track these particles; avoid conversions to other distributions (if possible);

utility programs

format conversion: ASTRA / CSRtrack / sdds

some simple manipulations of longitudinal phase space: add cavity wakes (based on point particle wakes, asymptotic fit to ECHO calculations), add space charge wakes (semi analytic model)

some simple manipulations of transverse phase space:

(transport matrices)

drift,

transport as defined by linear optics (design), matching

codes

some available tracking programs

Astra, Parmela, GPT: space charge effects → Poisson solver external fields (magnets, cavities)

Trafic⁴, CSRtrack: space charge and CSR effects; PEC shielding (planar chamber); external fields (magnets)

Elegant: external fields (magnets, cavities) & wakes simple 1d CSR model

FEL codes FAST Genesis Ginger (2d)

parallel versions available for most codes time consuming: CSR effects by sub-bunch method SASE-FEL

some more:

MAFIA, ITACA, SPIEFE, TREDI, ATRAP, HOMDYN

single particle:

AT, BETA, BMAD, COMFORT, COSY-INFINITY, DIMAD, LEGO, LIAR, LUCRETIA, MAD, MARYLIE, MERLIN, ORBIT, PETROS, PLACET, PTC, RACETRACK, SAD, SIXTRACK, SYNCH, TEAPOT, TRACY, TRANSPORT, TURTLE, UAL (from W. Decking) more: CHEF, ILCv, LUCRETIA, MATLIAR, SLEPT, ...

some more:

3d: FELEX, FELOS, RON, FELS, FRED3D, MEDUSA, TDA3D
2d: NUTMEG
1d: FS1T, SARAH
(from S. Reiche)

computational effort

example: European XFEL

LINUX cluster with 20 cpus (64 bit)

method 1

method 2

current & slice emittance

s2u: {many codes & glue} \leftrightarrow s2e-code

* Address 🙆 http://www.desy.de/xfel-beam/s2e/xfel_v4.html csrtrack legend particle generator gun, z= 28.81 m 1m after gun, z= 29.81 m) track to dogleg ed for quad setting in z= 72.25 m CSRtra z= 82.10 m (CSRtrack out) z=173.54 m CSRtrac z=195.54 m (CSRtrack out) z=385.89 m CSRtrad 2=407.89 m CSRtrack out) astra to sdd first sake then maybe gen and then sase2 genesis astra elegant

European XFEL

Figure 1: Current profile and longitudinal phase space at the undulator entrance (1nC at 17.5GeV)

LCLS

	1.0-nC, with CSR	1.0-nC, no CSR	0.2-nC, with CSR	0.2-nC, no CSR /
MAD Input Files:	use 📥 🖊 🖊	LCLS MAD Deck	use 🗫 🔶 🖊	LCLS MAD Deck
	use 📩	L2-Linac MAD Deck	use 🗸 🗸	🗮 use
	use 🖚	L3-Linac MAD Deck	tuse 🗸 🗸	🗲 use
MAD Output Files:	use 📩	LCLS Optics/Element List	use 💳	LCLS Optics/Element Lis
	use ⇒ 🧷 🔿	Optics Plots	use 🗾	Optics Plots
Elegant Input Files:	Read Me /			
Lattice Files:	LCLS 1-nC w/CSR	LCLS 1-nC no CSR	LCLS 200-pC w/CSR	LCLS 200-pC no CSR
Commad Files:	Elegant Command-file	tise vie vie vie vie vie vie vie vie vie vi	tuse use	des use
Parmela output coords:	use 📩	200k Particles	use 💳	200k Particles
S-band Z-Wakes:	Long-wake (5um-10mm)	use /	use 🔨	use /
	Long-wake (lum-1mm)	tise 🖉 🖊	use	use —
S-band XY-Wakes:	Tran-wake (5um-10mm)	use use	use 🗸	use 🗸
	Tran-wake (1um-1mm)	use 🚽	use 🚽	use 🚽
X-band Z-Wakes:	Long-wake (20um-25mm)	use use	dise use	use use
X-band XY-Wakes:	Tran-wake (50um-10mm)	use /	use 🚽	use /
Resistive-Wall Wakes:	Al 1-in diam. (2um-10mm)	use 📿 🔶	use 🖉	use 🖉 🖉
	SS 1-in diam. (2um-10mm)	🚛 use	use 🗸	use 🗸 🗸

The binary SDDS 200k Files below are output from ELEGANT tracking through the LCLS linac using 200k macro-particles to 14.35 GeV at the LCLS undulator entrance. The point where the particles are dumped has been matched to betaX=20.15 m, alphaX=-1.144, betaY=14.947 m, alphaY=0.8180, which assumes the undulator starts with an X-focusing full-length quadrupole magnet. There are output tracking files for 1 nC and 0.2 nC bunch charge and both with and without a 1D CSR model (Elegant) included in the bends and nearby dnfts, as listed below.

An A SCIT SDDS-formatted Slicad Runch File with time-denendent "clice" envelope parameters (e. a. current energy spread

Longitudinal phase space in FEL at 13.6 GeV with 1-nC (top) and 0.2-nC (bottom). Plots show the longitudinal distribution (left), and phase space. Bunch head at z < 0.

FEL & SASE: usual approximations

particle motion and wave-particle interaction are averaged over one or more wiggler wavelength

$$\frac{\partial \gamma}{\partial z} = -\frac{e}{mc^2} \left\langle \frac{\mathbf{E} \cdot \mathbf{v}}{v} \right\rangle$$

resonant approximation

$$k_l = 2\pi/\lambda_l$$

 $\mathbf{E} \approx \operatorname{Re}\left\{ \widetilde{\mathbf{E}}_{\perp}(\mathbf{r},t) \exp\left(i k_l (z-t/c)\right) \right\} + E_z \mathbf{e}_z$
slowly
in
z and t

paraxial approximation

$$\left(\nabla_{\perp}^{2} + 2ik\left(\frac{\partial}{\partial z} + \frac{1}{c}\frac{\partial}{\partial t}\right)\right)\widetilde{\mathbf{E}}_{\perp} = -i\mu_{0}\omega\widetilde{\mathbf{J}}_{\perp}$$

SASE: macro particles with controlled shot noise

SASE simulation

example: European XFEL, 1nC, 0.1nm length along undulator = 135 m step along undulator: $4\lambda_u$ particles per slice ~ 10000 step along bunch: $64\lambda_l$ number of slices ~ 10000 90 min / seed 150 seeds \rightarrow ~ 10 days LINUX cluster with 20 cpus (64 bit)

undulator-to-end simulation

Igor Zagorodnov

bunch shape and different contributions to long. wake in undulator

the energy loss along the undulator can be compensated by tapering

a tolerance study

Igor Zagorodnov

(impact of undulator gap)

SASE model ~ 10000 slices steady state model: one slice between periodic boundaries

```
example: European XFEL, 1nC, 0.1nmsteady state30 sec / seed100 seeds / \rightarrow \sim 1 hall points \rightarrow \sim 1 daySASE90 min / seed150 seeds \rightarrow \sim 10 daysPC (Pentium 4, 3GHz), LINUX cluster with 20 cpus (64 bit)
```


summary

complicated beam dynamics even before undulator

emittance compensation in gun, longitudinal compression,

sensitive longitudinal dynamic, importance of wakes, SC & CSR effects,

unwanted µ-bunching before undulator

fast approaches for particular effects

e.g. parameter sensitivity, µ-bunch instability, steady state

gun to undulator tracking

input from other investigations (wakes)

few CSR codes, fewer available, non with all possibilities (e.g. resistive wakes)

parallel SC & CSR programs

use of different methods and codes (SC, CSR)

interfaces: change of format / phase space description

careful control of parameters (real settings / computational)

"glued" multi method computations have been done

(but need experience and careful inspection of intermediate results) SASE-FEL

input from other investigations (surface properties, wakes) efficient "steady state" computations, SASE is time consuming (needs parallel c.) SASE-FEL codes need experience (many parameters)

