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Motivation and Requirements

∴ track particles in complicated accelerator structures

∴ calculate the fields self-consistantly i.e. taking into
account the field induced by the particles themselves

Maxwell-solver PIC-code
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In accelerator structures we have complicated geometries and large
scale differences

⇒ a Finite Element Method will be used
⇒ a large linear system has to be solved iteratively at every time
step.
Therefore:

∴ good choice of basis functions is important

∴ good preconditioners are needed

∴ code has to run on distributed memory clusters due to
the sizes of the problems in focus ⇒ scalability w.r.t.
the number of processors is an issue
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Charge conservation combined with the Maxwell equations implies
that Gauss’ Law is satisfied at any time step provided it holds at
t = t0.
In discrete space this is not necessarily true!
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Charge conservation combined with the Maxwell equations implies
that Gauss’ Law is satisfied at any time step provided it holds at
t = t0.
In discrete space this is not necessarily true!

enforced
not enforced

The influence of a correcting term which enforces Gauss’ law
TM110-mode: ‖Eex − Ecomp‖2 (∆t = 0.005, 64 Hexs, p=3)
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⇒ Gauss’ Law has to be enforced explicitly.
An ansatz with Lagrange multipliers is used (see Assous et al, J.
Comput. Phys., 1993). This yields a saddle point problem:
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Written as matrices:

Mu = f ⇒
(

M C
CT

) (
u
v

)
=
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f
g
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.

The corresponding matrix is symmetric and indefinite due to the
large zero block ⇒ causes some troubles when applying f.e. a
cg-solver to it. But the problem can be reformulated with help of
the gradient matrix Y and the Poisson matrix H. Since C = MY
and H = YT MY

Mũ = f

Hv = −g + YT f

u = ũ− Yv.
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Two different frameworks for high order edge and face elements
are used:

∴ Femster (P. Castillo et al., CMES 2002) uses interpolatory
bases of Silvester-Lagrange or alternatively spectral type; makes
use of discrete differential forms

∴ Ngsolve uses hierarchical bases which provide a local complete
sequence (J. Schöberl, S. Zaglmayr, Compel 2005). As a
consequence they yield a very simple gradient matrix Y.
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Use of high order basis functions

High order basis functions are well adapted to approximate smooth
electric and magnetic fields: higher approximation rate is expected
⇒ less degrees of freedom needed to get the same error
Though

∴ they lead to denser matrices

∴ the condition numbers get worse

∴ fields around corners and edges are not approximated
as well

∴ more degrees of freedom per element
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dofs per tetrahedron

Degrees of freedom vs. polynomial order for tetrahedra in Ngsolve
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∴ calculations in frequency domain show reduction in computation
time

∴ polynomial order can be raised/lowered elementwise where
needed (adaptively)

∴ mesh can still be refined (adaptively)
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Methods and Benchmarks

For the comparison of h- and p-refinement we used the unit cube
and a cylinder with PEC boundary conditions:

Both problems have analytic solution and known eigenfrequencies.
But they do not have singularities at edges or corners!
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Two methods were used to validate our codes:

∴ initialize the fields with the exact solution and compare the
computed with the exact solution after every timestep

∴ initialize the field randomly and compare the spectrum with the
known eigenfrequencies after a few thousand timesteps

The output of the two is:
an error plot a spectrum
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TM211-mode: ‖Ecalc − Eex‖2 (normalized) for different orders
(∆t = 0.005, 220 Tets)
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Results

3064 Tets
1889 Tets
1210 Tets
874 Tets
220 Tets

TM211-mode: ‖Ecalc − Eex‖2 (normalized) for different meshes
(∆t = 0.005, p=1)

Time

‖E
ca

lc
−

E
ex
‖ 2

21.510.50

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Christof Kraus, Andreas Adelmann (PSI), Peter Arbenz (ETHZ), Marcus Wittberger (PSI) 13



p=3
p=2
p=1

TM211-mode: ‖Ecalc − Eex‖2 (normalized) for different orders
(∆t = 0.005, 220 Tets)
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p=5
p=4
p=3

TM211-mode: ‖Ecalc − Eex‖2 (normalized) for different orders
(∆t = 0.005, 220 Tets)
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p=5
p=4
p=3

TM511-mode: ‖Ecalc − Eex‖2 (normalized) for different orders
(∆t = 0.005, 220 Tets)
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For both, cubic and cylindrical geometry, we found that
p-refinement performes very well. In the table below we show this
on the example of a cubic TM220-mode, ∆t = 0.001, t ∈ [0, 1].

p Tets aver. error cpu-time

2 4856 1.95 · 10−2 1127 s
3 607 1.10 · 10−2 788 s

p Tets aver. error cpu-time

4 384 5.29 · 10−3 1050 s
6 48 4.22 · 10−3 419 s
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Brief summary

∴ we could show that one can improve accuracy and computation
time by applying higher order basis functions to a FETD code
in simple geometries.

Future work

∴ benchmarks for geometries with singular edges and corners

∴ adaptive hp-refinement

∴ parallelization of code to increase problem sizes

∴ combine Maxwell solver with a PIC-code (IPPL)
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