

Towards a comparison of h- and p- Refinement in a Finite Element Maxwell Time Domain Solver

Christof Kraus, Andreas Adelmann (PSI), Peter Arbenz (ETHZ), Marcus Wittberger (PSI)

October 4, 2006

Motivation and Requirements

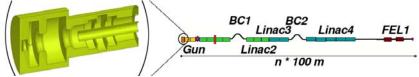
- \therefore track particles in complicated accelerator structures
- :. calculate the fields self-consistantly i.e. taking into account the field induced by the particles themselves

Maxwell-solver

PIC-code

$$\begin{array}{rcl} \mathbf{a} & = & \displaystyle \frac{q}{m}(\mathbf{E}+\mathbf{v}\wedge\mathbf{B}) \\ \mathbf{x} & = & \mathbf{x}_0+\mathbf{v}_0(t-t_0) \\ & + & \displaystyle \int_{t_0}^t \int_{t_0}^{t'} \mathbf{a}(t'') dt' dt'' \end{array}$$

In accelerator structures we have complicated geometries and large scale differences



 \Rightarrow a Finite Element Method will be used

 \Rightarrow a large linear system has to be solved iteratively at every time step.

Therefore:

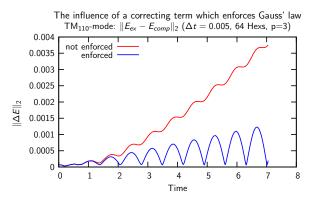
- \therefore good choice of basis functions is important
- \therefore good preconditioners are needed
- \therefore code has to run on distributed memory clusters due to the sizes of the problems in focus \Rightarrow scalability w.r.t. the number of processors is an issue

Charge conservation combined with the Maxwell equations implies that Gauss' Law is satisfied at any time step provided it holds at $t = t_0$.

In discrete space this is not necessarily true!

Charge conservation combined with the Maxwell equations implies that Gauss' Law is satisfied at any time step provided it holds at $t = t_0$.

In discrete space this is not necessarily true!



⇒ Gauss' Law has to be enforced explicitly. An ansatz with Lagrange multipliers is used (see Assous et al, J. Comput. Phys., 1993). This yields a saddle point problem:

$$egin{array}{lll} rac{\partial^2 \mathbf{E}}{\partial t^2} &+ c^2
abla \wedge
abla \wedge \mathbf{E} -
abla \phi &= -rac{1}{arepsilon_0} rac{\partial \mathbf{J}}{\partial t} \
abla \cdot \mathbf{E} &= rac{
ho}{arepsilon_0} \end{array}$$

With PEC boundary conditions: \Rightarrow Find $(\mathbf{E}(t), \Phi(t)) \in H(\operatorname{curl}, \Omega) \times H_0^1(\Omega)$ such that

$$\begin{split} \int_{\Omega} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \cdot \mathbf{F} d\mathbf{x} &+ c^{2} \int_{\Omega} (\nabla \wedge \mathbf{E}) \cdot (\nabla \wedge \mathbf{F}) d\mathbf{x} &- \int_{\Omega} \nabla \Phi \cdot \mathbf{F} d\mathbf{x} &= -\frac{1}{\varepsilon_{0}} \int_{\Omega} \frac{\partial \mathbf{J}}{\partial t} \cdot \mathbf{F} d\mathbf{x} \\ & \forall \mathbf{F} \in \mathsf{H}(\mathsf{curl}, \Omega), \\ \int_{\Omega} \mathbf{E} \nabla \varphi \ d\mathbf{x} &= \frac{1}{\varepsilon_{0}} \int_{\Omega} \rho \ \varphi \ d\mathbf{x} \\ & \forall \varphi \in \mathsf{H}_{0}^{1}(\Omega). \end{split}$$

Written as matrices:

$$\mathbb{M}\mathbf{u} = \mathbf{f} \quad \Rightarrow \quad \left(\begin{array}{cc} \mathbb{M} & \mathbb{C} \\ \mathbb{C}^{\mathcal{T}} & \end{array}\right) \left(\begin{array}{c} \mathbf{u} \\ \mathbf{v} \end{array}\right) = \left(\begin{array}{c} \mathbf{f} \\ \mathbf{g} \end{array}\right).$$

The corresponding matrix is symmetric and indefinite due to the large zero block \Rightarrow causes some troubles when applying f.e. a cg-solver to it. But the problem can be reformulated with help of the gradient matrix \mathbb{Y} and the Poisson matrix \mathbb{H} . Since $\mathbb{C} = \mathbb{MY}$ and $\mathbb{H} = \mathbb{Y}^T \mathbb{MY}$

$$\begin{split} \mathbb{M} \tilde{\mathbf{u}} &= \mathbf{f} \\ \mathbb{H} \mathbf{v} &= -\mathbf{g} + \mathbb{Y}^T \mathbf{f} \\ \mathbf{u} &= \tilde{\mathbf{u}} - \mathbb{Y} \mathbf{v}. \end{split}$$

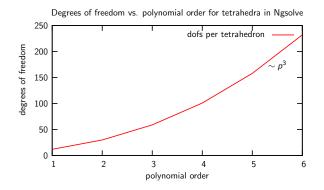
Two different frameworks for high order edge and face elements are used:

- ∴ Femster (P. Castillo et al., CMES 2002) uses interpolatory bases of Silvester-Lagrange or alternatively spectral type; makes use of discrete differential forms
- ∴ Ngsolve uses hierarchical bases which provide a local complete sequence (J. Schöberl, S. Zaglmayr, Compel 2005). As a consequence they yield a very simple gradient matrix 𝒱.

Use of high order basis functions

High order basis functions are well adapted to approximate smooth electric and magnetic fields: higher approximation rate is expected \Rightarrow less degrees of freedom needed to get the same error Though

- : they lead to denser matrices
- \therefore the condition numbers get worse
- :. fields around corners and edges are not approximated as well
- \therefore more degrees of freedom per element



- :. calculations in frequency domain show reduction in computation time
- ... polynomial order can be raised/lowered elementwise where needed (adaptively)
- ... mesh can still be refined (adaptively)

Methods and Benchmarks

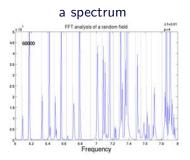
For the comparison of h- and p-refinement we used the unit cube and a cylinder with PEC boundary conditions:

Both problems have analytic solution and known eigenfrequencies. But they do not have singularities at edges or corners!

Two methods were used to validate our codes:

- :. initialize the fields with the exact solution and compare the computed with the exact solution after every timestep
- ... initialize the field randomly and compare the spectrum with the known eigenfrequencies after a few thousand timesteps
 - The output of the two is:

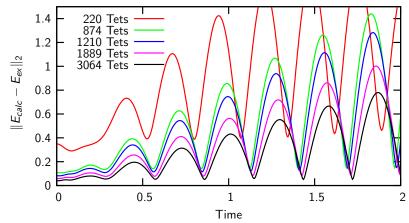


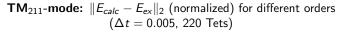


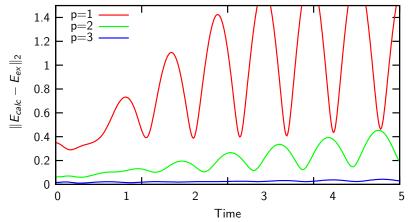
Christof Kraus, Andreas Adelmann (PSI), Peter Arbenz (ETHZ), Marcus Wittberger (PSI) 12

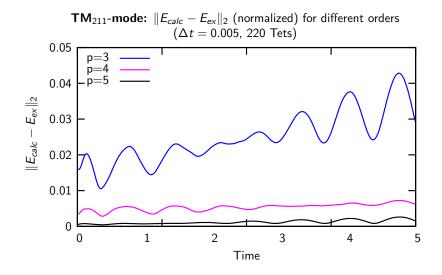
Results

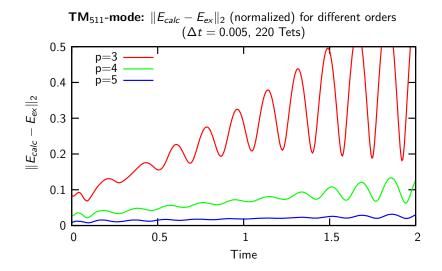
TM₂₁₁-mode: $||E_{calc} - E_{ex}||_2$ (normalized) for different meshes ($\Delta t = 0.005$, p=1)











For both, cubic and cylindrical geometry, we found that p-refinement performes very well. In the table below we show this on the example of a cubic TM₂₂₀-mode, $\Delta t = 0.001$, $t \in [0, 1]$.

р		aver. error	cpu-time
2	4856	$1.95 \cdot 10^{-2}$	1127 s
3	607	$1.10\cdot 10^{-2}$	788 s

р	Tets	aver. error	cpu-time
4	384	$5.29 \cdot 10^{-3}$	1050 s
6	48	$4.22\cdot 10^{-3}$	419 s

Brief summary

... we could show that one can improve accuracy and computation time by applying higher order basis functions to a FETD code in simple geometries.

Future work

- :. benchmarks for geometries with singular edges and corners
- :. adaptive hp-refinement
- :. parallelization of code to increase problem sizes
- :. combine Maxwell solver with a PIC-code (IPPL)