

Numerical Computation of Kicker Impedances: Towards a Complete Database for the GSI SIS-100/300 Kickers

Burkhard Doliwa and Thomas Weiland

TEMF, TU Darmstadt

(i) The Goal
(ii) Numerical Approach
(iii) Simulation *vs.* Analytical Results
(iv) SIS-100 Extraction/Emergency Kicker

demands on beam quality in FAIR:

- high intensity (up to N=10¹²/s for U^{28+})
- low momentum spread ($\Delta p/p < 10^{-3}$)

thorough investigation of collective beam instabilities needed!

High-Current Beam Physics Group at GSI (I.Hofmann, O.Boine-Frankenheim)

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

issue: impedance budget

TECHNISCHE UNIVERSITÄT

DARMSTADT

The SIS-100 Kickers

• longitudinal:

$$Z_{\parallel}(\omega) = -\frac{1}{q^2} \int dz \, e^{i\omega z/v} E_z \bigg|_{x,y=0}$$
$$\hat{\mathbf{j}}^{\parallel}(x,y,z;\omega) = \hat{\mathbf{z}}q\delta(x)\delta(y)e^{-i\omega z/v}$$

• horizontal:

$$Z_{x}(\omega) = \frac{i}{qd} \int dz \, e^{i\omega z/v} (E_{x} - vB_{y}) \Big|_{x,y=0} \qquad (\Omega/m)$$

Coupling Impedances

 $v = \beta c$

(Ω**)**

$$\mathbf{j}^{(x)}(x,y,z;\omega) = \hat{\mathbf{z}}q\delta(x-d)\delta(y)e^{-i\omega z/v}$$

• vertical:

$$Z_{x}(\omega) = \frac{i}{qd} \int dz \, e^{i\omega z/v} (E_{y} + vB_{x}) \Big|_{x,y=0} \qquad (\Omega/m)$$
$$\mathbf{j}^{(y)}(x, y, z; \omega) = \hat{\mathbf{z}} q \delta(x) \delta(y - d) e^{-i\omega z/v}$$

$$Z_{x}(\omega) = \frac{i}{qd} \int dz \ e^{i\omega z/v} (E_{x} - vB_{y})_{(x=0,y=0)}$$

• from Faraday's law, $-B_y = \frac{1}{i\omega} (\partial_z E_x - \partial_x E_z)$

$$Z_{x}(\omega) = \frac{v}{\omega q d} \int dz \, (\partial_{z} \{E_{x} e^{i\omega z/v}\} - e^{i\omega z/v} \partial_{x} E_{z})$$

• dropping the 1st term yields

$$Z_{x}(\omega) \approx \frac{-V}{2\omega q d^{2}} \int dz \ e^{i\omega z/v} (E_{z}(x=d) - E_{z}(x=-d))$$

$$Z_{x}(\omega) \approx \frac{-V}{\omega q^{2} (2x_{0})^{2}} \int d^{3}\mathbf{r} \, \mathbf{j}^{(2x)}(\mathbf{r};\omega)^{*} \cdot \mathbf{E}^{(2)}(\mathbf{r};\omega)$$

$$\mathbf{j}_{x}^{(2x)}(\mathbf{r};\omega) = \hat{\mathbf{z}}q\{\delta(x-d) - \delta(x+d)\}\delta(y)e^{-i\omega z/v}$$

task: compute the EM fields excited by the beam

chosen formulation: wave equation

 $\partial \mathbf{x} \mu^{-1} \partial \mathbf{x} \mathbf{E} - \omega^2 \varepsilon \mathbf{E} = -\mathbf{i} \omega \mathbf{j},$

- subject to one of the sources,
 - $j \in \{ j'', j^{(2x)}, j^{(2y)} \}$
- complex $\mu(\omega)$
- non-trivial geometry
- beam-adapted boundary conditions

TECHNISCHE UNIVERSITÄT DARMSTADT

Discrete Wave Equation

• Faraday's and Ampere's laws:

$$\frac{\partial \mathbf{x}\mathbf{E} = -\mathbf{i}\omega\mu\mathbf{H}}{\partial \mathbf{x}\mathbf{H} = \mathbf{i}\omega\varepsilon\mathbf{E} + \mathbf{j}} \} \implies \partial \mathbf{x}\mu^{-1}\partial \mathbf{x}\mathbf{E} - \omega^{2}\varepsilon\mathbf{E} = -\mathbf{i}\omega\mathbf{j}$$

• discretization: Finite Integration Technique (FIT)

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder 7

Boundary Conditions

• perfectly-conducting background material assumed:

- which b.c. to choose at beam-entry / exit planes ?
- ∞ beam pipe: $\mathbf{j}(z) \propto e^{-i\omega z/v} \Rightarrow \mathbf{E}(z), \mathbf{B}(z) \propto e^{-i\omega z/v}$
- *f*<*f*_{cutoff}: no propagating beam-pipe modes

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

- in beam pipes: $\mathbf{E}(z)$, $\mathbf{B}(z) \propto e^{-i\omega z/v} \Rightarrow \frac{\partial}{\partial z} \rightarrow -i\frac{\omega}{v}$ > quasi-2D wave equation
- for 3D problem:
 - solve 2D at z_{min} and z_{max} planes
 - use 2D solutions as 3D dirichlet b.c.

Burkhard Doliwa

Features:

- based on the Finite Integration Technique (FIT)*
- CAD and meshing by CST MICROWAVE STUDIO®
- 3D / 2D modules
- special beam boundary conditions
- integrated post-processing $\rightarrow Z_{\parallel}(\omega), Z_{x,y}(\omega)$
- hybrid *Python* / C⁺⁺ implementation:
 - pre- and postprocessing, EM field problem formulation
 - linear-algebra subroutines (Trilinos, Sandia)

(iii) Simulation vs. Analytical Results

• Zotter's formula for $Z_x(\omega)$ in axi-symmetric 2D chambers

TECHNISCHE

UNIVERSITÄT DARMSTADT

2D Ferrite Structures: $Z_{\parallel}(\omega)$

• analytical formulas from [Tsutsui, CERN-2000-004 AP]

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder TECHNISCHE

UNIVERSITÄT DARMSTADT

ferrite 4a4

 10^{3}

TECHNISCHE

UNIVERSITÄT DARMSTADT 2D Ferrite Structures: $Z_x(\omega)$

 analytical formulas from [B.W. Zotter, CERN-AB-2005-043, 2005]

Institut für Theorie Elektromagnetischer Felder **Burkhard Doliwa**

14

ferrite 4a4

- f < 250 MHz: PFN footprint in Z_{v}
- 250MHz < $f < f_{cutoff}$ =1.325GHz: ferrite-dominated

Effect of the PFN

• external PFN included by lumped impedance $Z_{q}(\omega)$

Burkhard Doliwa

• flux induced by currents:

 $i\omega\phi_{\Delta} = AI_1 + BI_2$

coil and PFN in series:

$$2i\omega\phi_{A} = -Z_{g}I_{2}$$

Institut für Theorie Elektromagnetischer Felder thus, $I_2 = \frac{-2A}{2B + Z_a} I_1$

yielding $j^{(2y)^*} \cdot E = I_1(CI_1 + DI_2) = \left(C - \frac{2AD}{2B + Z_g}\right)I_1^2$

 $i^{(2y)} \propto I_1$

Burkhard Doliwa

$$Z_y \propto \frac{1}{l_1^2} \int dV \, \mathbf{j}^{(2y)^*} \cdot \mathbf{E}$$

.

[compare Nassibian and Sacherer, NIM, 1979]

$$Z_{y}(\omega, Z_{g}) = a(\omega) - \frac{b(\omega)}{c(\omega) + Z_{g}(\omega)}$$

• computing $Z_y(\omega)$ for three situations, e.g.

$$Z_{g}(\omega) \in \{0, \infty, 50\}\Omega$$

determines the coefficients $a(\omega)$, $b(\omega)$, $c(\omega)$

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

Impedance of the Real PFN

• two versions: with and without 60Ω damping resistance:

Institut für Theorie Elektromagnetischer Felder **Burkhard Doliwa**

TECHNISCHE

UNIVERSITÄT DARMSTADT

22

Burkhard Doliwa

End of PFN-dominated regime

Institut für Theorie Elektromagnetischer Felder **Burkhard Doliwa**

TECHNISCHE

UNIVERSITÄT DARMSTADT

- Institut für Theorie Elektromagnetischer Felder **Burkhard Doliwa**
- \checkmark development of a 2D/3D impedance code
- \checkmark FIT, frequency domain wave equation
- ✓ special beam boundary conditions
- ✓ checks against analytical results
- ✓ SIS 100 extraction/emergency kicker
- ✓ PFN model

TECHNISCHE UNIVERSITÄT DARMSTADT

We thank the DFG (contract GK 410/3) and the GSI for funding this work.

Thank you for your attention.

TECHNISCHE UNIVERSITÄT DARMSTADT

 $Z_{y}(\omega, Z_{g}) = a(\omega) - \frac{b(\omega)}{c(\omega) + Z_{g}(\omega)}$

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

TECHNISCHE

UNIVERSITÄT DARMSTADT

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

TECHNISCHE UNIVERSITÄT DARMSTADT

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

TEM Reduction of Kicker Heating

Ø

• with / without 60- Ω damping resistor

[Nassibian and Sacherer, NIM, 1979]

PFN: $Z_{\rm c}(\omega)$

$$Z_{x}(\omega) = \frac{\beta c}{\Delta^{2}} \frac{\omega M^{2}}{i\omega L + Z_{g}(\omega)}$$

- coil self inductance: L
- mutual inductance beam-coil: $M \propto \Delta$
- nearly identical to our formula

 $Z_{x}(\omega) = a(\omega) - \frac{b(\omega)}{c(\omega) + Z_{\alpha}(\omega)}$

- ➤ no uncoupled contribution
- > M and L are real, frequency independent

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

(A) What to compute? (B) Computational Approach (C) Checks agains Analytically Models (D) SIS-100 Extraction/Emergency Kicker

in collaboration with

Udo Blell, Oliver Boine-Frankenheim Vladimir Kornilov, Ahmed Al-khateeb

Gesellschaft für Schwerionenforschung, Darmstadt

- consideration of all SIS-100 kickers (extraction/emergency, transfer, Q)
- modeling of feed-throughs
- code improvement:
 - adoption of finite-element library FEMSTER
 - 3D simulation of metalized ceramic pipe
 - parallelization
- validation against measurements

Check of the Parameterization

TEM

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder

39

TECHNISCHE

UNIVERSITÄT

TECHNISCHE

UNIVERSITÄT DARMSTADT

Elektromagnetischer Felder Institut für Theorie **Burkhard Doliwa**

Iarge contributions to ring impedances expected!

Implications for SIS-18 Beam Stability

- dominant parasitic contribution: resistive walls
- the 9 kicker modules may drive instabilities, e.g.

U²⁸⁺ coasting-beam, flat-top 100 ms f=2.1 MHz $Z_x(r.w.)=27 k\Omega/m, Z_x(kicker)=9x4=36k\Omega/m$

 $\tau = 22ms$ leading to beam loss [V. Kornilov]

TECHNISCHE

UNIVERSITÄT DARMSTADT

MKE Kicker (preliminary)

- correct dimensions, missing details
- ferrite 8C11 instead of 4A4

TECHNISCHE

UNIVERSITÄT DARMSTADT

Influence of Eddy-Current Strip

Burkhard Doliwa Institut für Theorie Elektromagnetischer Felder