Simulation studies of coherent instability thresholds with space charge

O. Boine-Frankenheim, V. Kornilov, FAIR-accelerator theory group, GSI Darmstadt, Germany

Contents:

- o The FAIR synchrotrons
- o Space charge and image fields
- o Transverse impedance sources and budget
- o Simulation codes
- o Space charge and impedance kicks in PATRIC
- o Self-consistent vs. 'frozen' space charge
- o 'Computer Beam Transfer Function' (CBTF)
- o Stabilization in long bunches
- o 'Preliminary' conclusions

The FAIR Synchrotrons Design beam parameters in SIS 18 and SIS 100

	SIS 18 today	SI S 18 in 2008	SI S 18 in 2012	SI S 100
Reference I on	U ⁷³⁺	U ⁷³⁺	U ²⁸⁺	U ²⁸⁺
Maximum Energy	1 GeV/u	1 GeV/u	0.2 GeV/u	2.7 GeV/u
Maximum Intensity	3x10 ⁹	2x10 ¹⁰	2x10 ¹¹	5x10 ¹¹
Repetition Rate	0.3 Hz	1 Hz	2.7 Hz	1 Hz

Space charge and image fields

Transverse incoherent space charge tune shift:

$$\Delta Q \propto -\frac{q^2 NR}{m B_f \beta_0^2 \gamma_0^3 \varepsilon}$$

Transverse coherent tune shift ('space charge impedance')

(Ω : frequency of coherent beam center oscillations)

	E [GeV]	ΔO_v	impedances	remarks
SNS	1	-0.15*	image, e-cloud, kicker, wall	1 ms accumulation uncontrolled loss < 10 ⁻⁴
CERN PS	1.4	-0.25	kickers	
SPS	26	-0.07	e-cloud, kickers	
SI S 18	0.01	-0.5*	image, wall, kicker, rf	Δ p/p preservation
SI S 100	0.2	-0.3*	image, wall, kicker, rf	1 s accumulation, △p/p preservation uncontrolled loss < 10 ⁻²

transverse beam profile inside a pipe

Transverse impedance sources in SIS 18/100

(0.3 mm thin) resistive (stainless steel) beam pipe
 o e.g. A. Al-khateeb, R. Hasse et al., under preparation
 Ferrite loaded injection/extraction kickers
 o B. Doliwa, et al., this conference
 o ther sources: e.g. 'Electron-clouds'
 o G. Rumolo, et al., this conference

coherent (dipole) frequency shift:

$$\Delta \Omega_c \propto -i \frac{q^2 N}{m \gamma_0 O_0} Z_{\perp}(\Omega)$$

-

growth rate

$$\tau_{I} = \left(\omega_{0}\Im\Delta\Omega_{c}\right)^{-1}$$

I mpedance Budget Estimates (coasting beam) Example: SIS 18 kicker impedances

Stability threshold (200 MeV/u) with $S = \omega_0 (\xi - (n - Q)\eta_0)$

Potential cures for SIS 18/100:

- o increase momentum spread by a factor 2 (not an option !)
- o increase tune spread with octupoles, space charge : (self-consistent ?) simulations
- orfor barrier buckets: mode coupling, 3D simulation studies !
- o active damping system (< 50 MHz, 1 ms reaction time)

Simulation codes for instability studies

Used presently at GSI

Code:	HEADTAIL	SI MBAD/UAL	PATRIC (JASCC ?)	
Authors:	G. Rumolo/F. Zimmermann, CERN	N. D'I mperio/ A.Luccio/N. Malitsky, BNL	O. Boine- Frankenheim/V. Kornilov, GSI	
Tracking:	One-turn map	e.g. TEAPOT	MAD-X sectormaps	
Space charge and image fields:	Laslett tune shifts (non-self- consistent)	2/2.5/3D schemes	2D Poisson solvers, '2.5D slicing'.	
I mpedances:	Wake fields	I mpedance kicks	I mpedance kicks	
Language	С	C++/MPI	C++/MPI/Python	
Other options:	e.g. electron clouds	All UAL options, 'design code'	Electron cooling, intra-beam scattering	

PATRIC Comparison Comparison '2.5 D' sliced space charge kicks Sm: position in the lattice itudinal position Sm: position in the lattice

Transverse impedance kicks in PATRIC

see also V.Danilov, J. Holmes, PAC 2001

Dipole moment I mpedance kick: times current: $\psi(t)$ localized impedance $\Delta x' = rac{\int F_{\perp} ds}{eta_0^2 E_0} = \operatorname{Re}\left(rac{iq}{eta_0 E_0} \sum_i \psi_j Z_{\perp}(\omega_j) \exp(i\omega_j t)
ight)$ $\Omega_i = (n \pm Q)\omega_0$ In the bunch frame ($\Delta s=L$ for localized impedance): Coherent $\Delta x'(z,t) = \frac{\Delta s}{L} \frac{q}{\beta_0 E_0} \operatorname{Re}\left(i \exp(\pm i Q \omega_0 t) \sum_{n} \psi_n(t) Z_{\perp}[(n \pm Q) \omega_0] \exp(i n z/R)\right)$ frequencies Slowly varying dipole amplitude: $\psi_n(t) = \exp(\mp i Q \omega_0 t) \int_0^L \psi(z,t) \exp(-inz/R) dz$ Numerical implementation: Coasting beam (n=0): $\psi(z, t_m) = \beta_0 C \sum_i Q_j S(z - Z_j) X_j$ $\psi(z,t) = I_0 \bar{x}(z,t)$ $\psi_n(t_m) = \text{FFT}[\psi(z_j, t_m)]$ $\Delta x'(t) = \frac{\Delta s}{L} \frac{qI_0}{\beta_0 E_0} \left(-\mathrm{Im}(Z_\perp)\bar{x}(t) + \mathrm{Re}(Z_\perp)\frac{\dot{\bar{x}}(t)}{O(v_0)} \right)$ $\Delta x'(z_j, t_m) = \frac{q}{\beta_0 E_0} \operatorname{Re} \left(\operatorname{FFT}^{-1}[i\psi_n(t_m) Z_{\perp}((n \pm Q)\omega_0)] \right)$

Stability boundaries from PATRIC simulation scans coasting beams with space charge

I ssues:

- o Computer time and resources consuming endeavor, only possible in 1D and 2D(?)
- o Artificial noise can spoil the results: codes are not 'collisionless'
- o How does the (2D) results change if we 'freeze' space charge.

Oliver Boine-Frankenheim, FAIR - Accelerator Theory Group ICAP 06

Self-consistent vs. frozen space charge kicks for coherent (dipole) instability thresholds

 In parameter scans required for stability boundary studies full 2.5D simulations with self-consistent space charge and sufficient macro-particle number and grid resolution cannot be performed over the time scales of interest (> ms) in SIS 18/100.

o A possible solution are frozen (nonlinear) space charge fields:

Parabolic beam profile and rigid 'offset' dipole oscillations: $\rho(x, y) \approx \frac{2I(z)}{\pi a^2 V_0} \left(1 - \frac{(x - \bar{x})^2 + y^2}{a^2}\right)$

Resulting nonlinear transverse space charge electric fields, moving with the beam center:

$$E_{x}(x,y) \approx \frac{Ix}{\pi \varepsilon_{0} v_{0} 2a^{2}} \left(2 - \frac{1}{a^{2}} ((x - \bar{x})^{2} + y^{2}) \right) \qquad E_{y}(x,y) \approx \frac{Iy}{\pi \varepsilon_{0} v_{0} 2a^{2}} \left(2 - \frac{1}{a^{2}} ((x - \bar{x})^{2} + y^{2}) \right)$$

Questions to be answered:

✓ Do we need self-consistent space charge in order to predict instability thresholds?

✓ How to decide, what are appropriate tests ?

'Computer Beam Transfer Function' (CBTF) 2D coasting beam (n=0 mode)

Determine and compare the properties of different codes/approximations.

o Obtain stability boundaries in one simulation run, instead of time consuming parameter scans

Stability boundary from CBTF with space charge? A 'challenging' example: octupole and (nonlinear) space charge

CBTF results (very preliminary !): $\Re\Delta\Omega_c$ octupole only S oct. + sc. -10 -15 -20 -20 - 1 V $\Im\Delta\Omega_c/S$ $\Re\Delta\Omega_c$ S frozen sc. \supset self-consistent sc. -10-15-20

-1.5

-1.0

-0.5

0.0

Stability boundary obtained from analytic (non-self-consistent) dispersion relation (Möhl, Schönauer, 1979)

Oliver Boine-Frankenheim, FAIR - Accelerator Theory Group ICAP 06

0.5

1.0

resistive impedance

Stabilization mechanisms in long bunches relevant in SIS 18/100

Bunching (here barrier bucket) can strongly increase the instability thresholds. 'Slow mode damping at the bunch end.'

Better understanding of the mechanisms with space charge is required: 2.5D simulation studies can help.

'Preliminary' conclusions

The space charge and impedance conditions in SIS 18/100 are special and require detailed parameter studies:

- o Long time scales.
- o Long bunches in single rf or barrier buckets.
- o Relatively large space charge tune spreads. 'Thick beams'.
- o Broadband impedance spectrum: wall, kickers, collimators, e-clouds (?),...
- ✓ Potential cures: Octupoles, bunching, (reactive/resistive) broadband feedback systems

The 2.5D space charge/impedance module in PATRIC is presently being benchmarked against analytic examples ('Schottky' noise spectrum, CBTF, stability boundaries) and also against other codes (UAL/SIMBAD, HEADTAIL).

Besides the SIS 18/100 impedance budget, one important outcome of the studies will be e.g. the importance of self-consistent space charge for the stability boundaries.