

Analysis of measured transverse beam echoes in RHIC

Stefan Sorge¹, Oliver Boine-Frankenheim¹, Wolfram Fischer²

¹ GSI, Darmstadt

² BNL, Upton Long Island, New York

GSI Motivation

- Diffusion processes lead to emittance growth and so, to change of beam equilbrium
- Major contribution expected to be due to Intra Beam Scattering (IBS)
- In HESR beams with high currents, small momontum spread are desired
 → strong sensitivity to diffusion, need to determine diffusion in HESR
- In RHIC, expexted diffusion times $au_{
 m diff} \sim {
 m hours}$
 - \rightarrow direct measurement of emittance growth difficult
- Other possibility: measurement of transverse beam echoes provides possibility to measure diffusion within comparable short times $\sim 1000 T_0$
- \bullet Additionally, echoes can be used to measure numerical diffusion 1
- ¹ A. Al-Khateeb, O. Boine-Frankenheim, R. Hasse, and I. Hofmann, PRST AB 6, 014205 (2003)

Need of:

- Focusing lattice
- Initial one turn dipole kick leading to displacement and dipole betatron oscillation of whole beam with the initial amplitude $\langle x \rangle_0$
- Nonlinear element, e.g. octupole, that leads to decoherence and decrease of amplitude of the dipole signal
- one turn quadrupole kick after certain time au

 \downarrow

After certain time coherent dipole oscillation ("beam echo") will briefly appear with an amplitude maximum at $t=2\tau$

GSI Generation of transverse beam echoes

Horizontal phase space diagram depending on time, $au=500~T_0$

GSI Generation of transverse beam echoes

Amplitude of transversal oscillation $\langle x \rangle(t)$, conditions from O. Brüning et al.¹: $\tau = 500 T_0$, maximum echo amplitude at $2\tau = 1000 T_0$

¹O. Brüning, W. Fischer, B. Parker, "On the possibility of Transverse Echoes in RHIC", C-A/AP/4 October 1999 ICAP 2006, October, 2-6, 2006, Chamonix Mont-Blanc

GSI Tracking method

- Configuration from O. Brüning et al.
- Rotational matrix for linear focusing parts with correct phase advances
- Usage of normalized coordinates

$$x_{n}=rac{x}{\sqrt{eta}}$$
 and $x_{n}^{'}=\sqrt{eta}x^{'}+rac{lpha}{\sqrt{eta}}x^{'}$

• Kicks for one turn dipole, one turn quadrupole, and octupoles, and a random kick for diffusion with Gauss distribution $(x + \Delta x) = (\cos \Delta W + \sin \Delta W)$

$$egin{pmatrix} x_{n,i+1} \ x_{n,i+1}' \end{pmatrix} = egin{pmatrix} \cos\Delta\Psi & \sin\Delta\Psi \ -\sin\Delta\Psi & \cos\Delta\Psi \end{pmatrix} egin{pmatrix} x_{n,i} + \Delta x_n(m{D}_0) \ x_{n,i}' + \Delta x_n'(x_n,y_n,m{D}_0) \end{pmatrix}$$

GSI Diffusion coefficient D_0

$$D_0 = rac{arepsilon_{
m rms}}{ au_{
m diff}} \, .$$

- $\varepsilon_{\rm rms}$, $\tau_{\rm diff}$ initial values being constant in space and time:
 - \rightarrow strong simplification
 - $-\tau_{\rm diff}$ calculated from initial rms emittance of a Gaussian beam
 - but rms emittance is function of time
 - in addition, D_0 is intrinsically a function of emittances of single particles

GSI Analytic formula for echo amplitude

Relative echo amplitude¹:

$$A_{
m echo,rel}:=rac{\langle x
angle_{
m echo}}{\langle x
angle_0}=rac{q}{lpha^3}rac{ au}{ au_{
m dec}}$$

with:

 $\begin{aligned} \alpha &= \frac{2}{3} \frac{\tau}{\tau_{\text{diff}}} \left(\frac{\tau}{\tau_{\text{dec}}}\right)^2 + 1 \\ \tau &= \text{quadrupole kick time and } \tau_{\text{diff}} - \text{diffusion time} \\ \tau_{\text{dec}} &\approx \frac{T_0}{4\pi\mu} - \text{and decoherence time}^2 \text{ with} \\ \mu &= \text{detuning due to nonlinearity for } x = \sigma_{\text{rms}} \\ q &= \frac{\beta_x}{f} - \text{normalized quadrupole strength} \end{aligned}$

¹ A. W. Chao, Chapter 2 "Echo effect" in Lecturenotes: http://www.slac.stanford.edu/~achao/lecturenotes.html

² G. Stupakov "Echo" in "Handbook of accelerator physics" ed. by A. W. Chao and M. Tigner,

World Scientific (1999)

GSI Echo amplitudes: tracking vs. analytic formula

Echo amplitudes without diffusion, detuning $\mu = 0.0014$

• Analytic formula valid for

$$u=rac{\langle x
angle_0^2}{2etaarepsilon_{
m ms}}\ll 1$$

$$ullet u=1$$
 for $\langle x
angle_0=3.8$ mm

- Particle number used in tracking: $n_{\text{part}} = 10000 \dots 50000$
- For smaller initial ampitudes $\langle x \rangle_0$ larger particle numbers necessary

GSI Echo amplitudes: tracking vs. analytic formula

Echo amplitudes without diffusion, detuning $\mu = 0.0014$

- "1 dimensional": no vertical extension \rightarrow unrealistic
- Coupling of directions leads to decrease of amplitudes in tracking calculations
- Analytic formula underestimates echo amplitudes for initial amplitudes used in experiments

GSI RHIC experiments

- Application to existing experiments done in RHIC^{1,2}:
 - Experiments with Au^{79+} , Cu^{29+} , and p
- This work:
 - Usage of IBS rates from realistic IBS models to describe experiments
 - Here, restriction to description of experiments with Au^{79+}

¹W. Fischer, T. Satogata, R. Tomas, "Measurement of Transverse Echoes in RHIC", Proc. of PAC 2005

²W. Fischer, "Transverse echo measurements in RHIC", Proc. of COOL 2005, Galena, Illinois

GSI Parameters for Au experiments

mass / charge number A/Z	179/79
relativistic γ	10.5
circumference/m	3834
revolution time $T_0/\mu s$	12.8
rms emittance, unnorm. $\varepsilon_{\rm rms}/{ m mm}$ mrad	0.16
rms beam size, σ/mm	2.5
initial dipole displacement $\langle x angle_0/$ mm	10
detuning μ , for $x=\sigma$	0.0005 0.0022, (0.0014)
normalized quadrupole strength q	0.025
quadrupole kick time $ au/T_0$	450
bunch intensity $N_b/10^9$	0.1 1.0

GSI 1. Example: Rel. echo amplitude $A_{ m echo,rel}$ vs. μ

Results from experiments and tracking for Au⁷⁹⁺

- Calculated amplitudes yielded without diffusion
- For small detuning μ , calculated amplitudes smaller than measured ones
 - \rightarrow can not reproduce them
- For large μ, further increase of echo amplitudes in contrast to measured ones

Calculated diffusion coefficients D_0 corresponding to measured rel. amplitudes

- Finite diffusion coefficients
- Adjusted to reproduce measured echo amplitudes
- For $\mu < 0.001$, no reasonable D_0 possible

 $D_0 \sim (0.1 \ ... \ 1)$ mm mrad/s corresponds to $au_{
m diff} \sim (1.6 \ ... \ 0.16)$ sec.

GSI 2. Example: $A_{ m echo,rel}$ vs. bunch intensity N_b

Results from Au⁷⁹⁺ experiment

- 28 data points instead of 7
 → possibly better statistics
- As expected for IBS, echo amplitude decreases with bunch intensity

ICAP 2006, October, 2-6, 2006, Chamonix Mont-Blanc

• From analytic formula follows

$$A_{ ext{echo,rel}}^{-1/3} = \left(rac{ au_{ ext{dec}}}{q au}
ight)^{1/3} \left(1+rac{2}{3}rac{ au^3}{ au_{ ext{dec}}^2}rac{1}{ au_{ ext{ibs}}}
ight)$$

• IBS diffusion time $au_{
m diff} \propto N_b^{-1}$, hence

$$A_{
m echo,rel}^{-1/3}=c_1+c_2N_b$$

• Linear regression and inserting gives

$$au_{
m dec} = 41~T_0$$
 and $rac{ au_{
m ibs}}{T_0} = 5.5\cdot 10^{13}/N_b$

For $N_b=10^8$ we find $au_{
m ibs}=550000~T_0=7$ s.

Diffusion coefficients used are not realistic

• Diffusion coefficients used correspond to diffusion times

 $au_{
m diff} \sim (10 \ ... \ 0.1) \; {
m sec} pprox (800000 \ ... \ 8000) \; T_0$

with $T_0 pprox 12.8~\mu {
m s}$

• MAD-X using Bjorken-Mtingwa model applied to bunches with particle number $N_b = 10^8 \dots 10^9$, length $l_{b,\rm rms} \sim 1$ m, and energy uncertainty $\sigma_{\rm e} = 10^{-3}$ gives

 $au_{
m diff} \sim (25000 \ ... \ 2500) \ {
m sec} pprox (2 \cdot 10^9 \ ... \ 2 \cdot 10^8) \ T_0$

GSI Tracking with realistic diffusion time

ICAP 2006, October, 2-6, 2006, Chamonix Mont-Blanc

Analytic formula

$$A_{
m echo,rel} = rac{q}{lpha^3} rac{ au}{ au_{
m dec}} \qquad {
m with} \qquad lpha = rac{2}{3} rac{ au}{ au_{
m diff}} \left(rac{ au}{ au_{
m dec}}
ight)^2 + 1$$

and same parameters as in tracking calculation

$$lpha = 1.0000935 \quad o \quad rac{1}{lpha^3} = 0.9997.$$

Example: For reduction of amplitude to 50 %, it must be $\tau^3 \approx 0.4 \tau_{\text{diff}} \tau_{\text{dec}}^2$

$$au_{
m dec}pprox 1 \; T_0$$
 with $\; au=450 \; T_0={
m const} \;$ unrealistic

or

$$au pprox 6400 \; T_0$$
 with $\; au_{
m dec} = 57 \; T_0 = {
m const}$

GSI Long term tracking with realistic diffusion time

 $au = 6400 \ T_0, \ au_{
m dec} = 57 \ T_0, \ {
m and} \ au_{
m diff} = 2500 \ {
m s} = 2 \cdot 10^8 \ T_0$

- Echo appears at expected position $t_{
 m echo} pprox 12800 \ T_0$
- Reduction of amplitude due to diffusion \sim 50 %
- In experiment, echoes only for $400 \ T_0 < \tau < 550 \ T_0.$
- It remains, that experimental data can be explained only with very large diffusion coefficients.

Search for other mechanisms necessary, which decrease echo amplitudes.

GSI Conclusion

- Usage of transverse beam echoes was presented as method to estimate diffusion processes in an ion beam. Application to experiments in RHIC.
- Calculations applying analytic formula of Chao and tracking method using rotation matrix.
- Calculations show, that diffusion coefficients according to realistic IBS times are much too small to describe experimental echo amplitudes
- To detect effects with realistic IBS times, echo measurements had to be extended to longer times
- Search for other mechanisms influencing amplitudes and
- Investigation of consequence of approximations used for the diffusion coefficients are necessary.