

Beam-Dynamics Simulation for the High-Energy Storage Ring

A. Lehrach, FZ Jülich

Introduction

FAIR Layout HESR Reference Design

Beam Dynamics Studies

Closed-Orbit Correction Beam Equilibria Luminosity Considerations Impedances

Conclusion / Outlook

HESR-Consortium: FZJ, GSI, TSL, and Univ. of Bonn and Dortmund

High-Energy Storage Ring (HESR)

A. Lehrach, ICAP 2006, Chamonix

Experimental Requirements

PANDA (Strong Interaction Studies with Antiprotons):

Momentum range: 1.5 to 15 GeV/c (Protons and Antiprotons)

	"High Resolution Mode"	"High Luminosity Mode"
Momentum range	Up to 8.9 GeV/c	Full momentum range
Number of circulating particles	10 ¹⁰	10 ¹¹
Target thickness (Hydrogen Pellets)	4·10 ¹⁵ cm ⁻²	4·10 ¹⁵ cm ⁻²
Peak luminosity	$2 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$	2·10 ³² cm ⁻² s ⁻¹
Beam emittance (rms, norm.)	1 mm mrad	1 mm mrad
Momentum resolution	$\Delta p/p_{\rm rms} = 10^{-5}$	$\Delta p/p_{rms} = 10^{-4}$
Beam Cooling	Electron Cooling (8.9 GeV/c)	Stochastic Cooling (>3.8 GeV/c)

Beam Dynamics Issues

•	RF requirement	S S
		injection scheme, acceleration, clearing gap → RF requirements (ORBIT)
-	Closed-orbit cor	rection
		positioning errors of magnets → steering concept (MAD-X)
•	Dynamic apertu	re
		field quality of magnets → multipole corrector concept effect of the electron beam and other non-linear fields (MAD-X, PTC(?))
•	Beam-cooling / I	beam-target interaction / intrabeam scattering
		beam heating \rightarrow beam cooling
		(BetaCool, MOCAC, PTARGET, Analytic code)
-	Beam losses at in	nternal targets / luminosity estimations
		particle losses \rightarrow ring acceptance
		cycle description \rightarrow average luminosity
		(Analytic formulas)
-	Impedance	
		RF cavities, kicker / pick-ups → low impedance design, feedback (SIMBAD based on ORBIT)

Closed-Orbit Correction

Positioning error	Gaussian	Uniform
Angle / mrad	0.55	1.1
Position / mm	0.5	1.0
BPM accuracy	Gaussian	
Scaling	0.1	
Offset / mm	0.1	

Gaussian distribution truncated at 2.5 σ

Goal:

Max. closed-orbit below 5mm Strength of correction dipoles below 1 mrad Minimum number of correction dipoles, BPMs

Method: Ideal orbit response matrix

Normal: $S = R \cdot \Theta$ Inverted: $\Theta = R^{-1} \cdot S$ $R_{kb} = \frac{\cos(\frac{\mu}{2} - \phi_{bk})}{2\sin\frac{\mu}{2}} \sqrt{\beta_b \beta_k}$

Closed-Orbit Correction

Simple Concept: BPM and correcting dipole near each quadrupole

 \Rightarrow 108 correction dipoles and BPMs

Results: 24 uni-directional correction dipole per plan in arcs = 48 8 bi-directional ones in straights

About 100 corrected closed-orbits for each case

		32 BPMs per arc		24 BPMs per arc	
		Gaussian	Uniform	Gaussian	Uniform
Χ	Max:	2.91 mm	3.38 mm	7.15 mm	6.65 mm
	Mean:	$(2.37 \pm 0.46) \text{ mm}$	$(2.70 \pm 0.43) \text{ mm}$	$(5.59 \pm 1.22) \text{ mm}$	$(5.74 \pm 0.63) \text{ mm}$
Y	Max:	4.67 mm	5.48 mm	5.96 mm	7.27 mm
	Mean:	(3.36 ± 0.77) mm	$(3.72 \pm 0.83) \text{ mm}$	$(4.88 \pm 1.04) \text{ mm}$	$(5.23 \pm 0.99) \text{ mm}$
Χ	Max:	0.93 mm	1.06 mm	1.38 mm	1.63 mm
(RMS)	Mean:	$(0.73 \pm 0.09) \text{ mm}$	$(0.88 \pm 0.10) \text{ mm}$	$(1.07 \pm 0.14) \text{ mm}$	$(1.34 \pm 0.16) \text{ mm}$
Y	Max:	1.08 mm	1.17 mm	1.26 mm	1.38 mm
(RMS)	Mean:	$(0.87 \pm 0.18) \text{ mm}$	$(0.96 \pm 0.16) \text{ mm}$	$(1.01 \pm 0.20) \text{ mm}$	$(1.11 \pm 0.17) \text{ mm}$

• Closed orbit bumps at the injection, cooling devices, and target point: 1 mrad correction strength additionally

- Closed orbit correction at electron cooler: 29mrad at injection energy
- Investigation of failed BPMs

Courtesy: D.M. Welsch (FZ Jülich)

A. Lehrach, ICAP 2006, Chamonix

II. General project meeting meetings, Dubna: 24.3.2005 - 25.3.2005 Meeting on internal target effects: Darmstadt, 3.6.2005

Project duration: April 2004 to March 2006

III. General project meeting meetings, Jülich, 20.10.2005 - 21.10.2005

Workshops: I. General project meeting meetings, Kiev: 28.5.2004 - 29.5.2004 Meeting on Beam-target interaction, Uppsala 29.6.2004

Workshops and reports

Final report + several papers

Development and benchmarking of simulation tools

INTAS Project

- Instabilities and impedances
- Trapped particle studies

Tasks:

Experiments at (CELSIUS), COSY and ESR

Physics models for beam cooling equilibria

Full HESR/NESR simulations

Participating institutes (team leaders):

- **GSI Darmstadt (O. Boine-F.)**
- FZ Jülich (A. Lehrach)
- ITEP Moscow (P. Zenkevich)
- **JINR Dubna (I.N. Meshkov)**
- Univ. Kiev (I. Kadenko)
- TSL Uppsala (V. Ziemann)
- **TU Darmstadt (Th. Weiland)**

- HESR: Target will be switched on after injection and cooling/IBS equilibrium
- Transverse heating is required to ensure 1 mm spot size on the target

Electron Cooling Force

Parkhomchuk model (*particle frame):

$$F^{*}(\vec{v}^{*}) = -KL_{C} \frac{\vec{v}^{*}}{((v^{*})^{2} + (v_{eff}^{*})^{2})^{3/2}}$$

Effective Coulomb log:

$$L_{C} = \ln \left(\frac{b_{\perp} + \rho_{\max}}{b_{\perp}} \right) \approx 10$$

Cooling rate:

$$\tau_0^{-1} = \frac{4\pi Z^2 r_p r_e n_e c \eta_c L_e}{A \gamma_0^2} \frac{c^3}{(v_{eff}^*)^3}$$

Longitudinal force (momentum spread δ):

$$F_{\parallel}^{e} = \tau_0^{-1} \delta \frac{\delta_{eff}^3}{\left(\delta_{eff}^2 - \delta^2\right)^{3/2}}$$

Measurements at CELSIUS indicates an accuracy of the longitudinal Parkhomchuk force within a factor of 2

Electron Cooling

Results agree very well

with BetaCool simulations

Production Rate and Maximum Luminosity

Antiproton production rate:

$$\dot{N}_{\overline{p}} = 2 \cdot 10^7 \, / \, s$$

→ Maximum luminosity:

 $\sigma_{tot} = 100 \text{ to } 50 \text{ mbarn}$: total hadronic cross section $\Rightarrow L_{max} = 2 \text{ to } 5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Relative particle loss rate:

$$(\tau_{loss}^{-1}) = f_{rev} n_t \sigma_{total}$$

http://pdg.lbl.gov/xsect/contents.html

At low energies: Single Coulomb scattering at target out of the ring transverse acceptance Energy straggling at target out of the longitudinal ring acceptance Single IBS scattering (Touschek loss rate) for small beam emittance

Beam Loss Rates

Hadronic Interaction

$$(\tau_{loss}^{-1})_{H}^{t} = f_{rev} n_{t} \sigma_{p\bar{p}}^{total}$$

Single Coulomb scattering out of the acceptance

$$(\tau_{loss,\perp}^{-1})_C^t = f_{rev} \frac{4\pi Z_t^2 Z_i^2 r_i^2 n_t}{\beta_0^4 \gamma_0^2 \theta_{eff}^2}, \theta_{eff} = \sqrt{\frac{\varepsilon_t}{\beta_t}}$$

Energy straggling out of the acceptance

$$(\tau_{loss,\parallel}^{-1})_{S}^{t} = f_{rev} \int_{\varepsilon_{eff}}^{\varepsilon_{max}} w(\varepsilon) d\varepsilon = f_{rev} \xi \left(\frac{1}{\varepsilon_{eff}} - \frac{1}{\varepsilon_{max}} - \frac{\beta_{0}^{2}}{\varepsilon_{max}} \ln \frac{\varepsilon_{max}}{\varepsilon_{eff}} \right)$$

Single IBS scattering (Touschek loss rate)

$$(\tau_{loss}^{-1})_{IBS}^{t} = \frac{1}{T_0} \frac{D_{\parallel}^{IBS}}{L_C \delta_{eff}^2}, D_{\parallel}^{IBS} = \frac{\Lambda_{\parallel}^{IBS}}{\varepsilon_{\perp}^{3/2}}$$

 $\varepsilon_t = 1 \text{ mm mrad}, \ \delta_{eff} = -\varepsilon_{eff}/(\beta_0^2 E_0) = 10^{-3}$

Luminosity Considerations

Example:Pellet target: $n_t=4\cdot10^{15}$ cm⁻²Total hadronic cross section (1.5, 9, 15 GeV/c) : $\sigma=100, 60, 50$ mbarn
Revolution frequency: $f_c=443, 519, 521$ kHz

	Relative Loss Rate	$(\tau_{loss}^{-1}) / s^{-1}$	
Scattering Process	1.5GeV/c	9 GeV/c	15 GeV/c
Hadronic Interaction	1.8·10 -4	1.2.10-4	1.1.10-4
Single Coulomb (ε=1mm mrad)	2.9·10 -4	6.8·10 ⁻⁶	2.4.10-6
Energy Straggling (Δp _{max} /p=±10 ⁻³)	1.3.10-4	4.1·10 ⁻⁵	2.8·10 ⁻⁵
Touschek (ε=1mm mrad)	4.9·10 ⁻⁵	2.3.10-7	4.9·10 ⁻⁸
Total loss rate	6.5·10 -4	1.7.10-4	1.4.10-4
1/e Beam lifetime / s	~ 1540	~ 6000	~ 7100
Maximum Luminosity / 10 ³² cm ⁻² s ⁻¹	0.82	3.22	3.93

O. Boine-Frankenheim et al., NIMA 560 (2006)

A. Lehrach et al., NIMA 561 (2006)

F. Hinterberger, Jül-4206 (2006)

Average Luminosity

Longitudinal Impedance

Super Computer JUMP

John von Neumann Institut für Computing

Parameter IBM p690-Clusters Jump, FZ Jülich		
Nodes	41	
Processors per node	32	
Processors total	1312	
Overall Peak Performance	8,9 TFLOPS	
Memory per node	128 GByte	
Total memory	5 TByte	
Storage capacity	50 TByte	
Operating system	AIX 5.1	
Users	ca. 450	

4 CPU hours on 2 nodes (32 processors per node), full 3D simulation: 100000 macros → 3740 turns 10000 macros → 36900 turns 1000 macros → 364000 turns

→ Study 3D long term stability with many macro particles

Summary & Outlook

• **RF gymnastics:**

system parameter determined, beam losses studies to be done

Closed orbit correction:

steering concept finished

Dynamic aperture:

calculated field maps for HESR magnets and non-linear field of electron cooler beam used soon

Beam equilibrium calculations:

different codes available and utilized for electron and stochastic cooling

Beam losses and cycle description:

studies finished, sufficient antiproton production rate needed

especially low momenta

ring acceptance should be increased (curved magnets)

Longitudinal impedance

 $\Delta p/p > 3.10^{-5}$ seems possible for long. impedance in the range of 100Ω !

→ Main tool for beam dynamics studies: MAD-X, Different Codes for Beam Cooling

Design Study EU-FP6: DIRAC Secondary Beams HESR4: Beam Dynamics and Collective Effects

- Task 1: Detailed beam accumulation studies barrier bucket manipulations
- Task 2: Beam cooling and kinetic equilibrium
 - **Code benchmarking**
 - **3D** beam distribution in the HESR
- Task 3: Collective instabilities and impedances
 Accurate impedance budgets
 Impedance calculations and models

Partners:

- GSI Darmstadt High current beam physics group Contact: O. Boine-Frankenheim
- FZ Jülich IKP, COSY group Contact: A. Lehrach
- Uppsala University, Sweden The Svedberg Laboratory Contact: V. Ziemann

Results and achievements

- ✓ Employment: Aug. '05 Scientist for HESR beam dynamics simulations hired at GSI.
- ✓ Publications: Analysis of the HESR luminosities using realistic machine cycles. Kinetic study of longitudinal beam cooling equilibrium and beam loss
- ✓ Ongoing studies: 3D kinetic studies (beam cooling equilibrium and beam loss); beam stability and impedance budget

Project duration: 2005 to 2008