# CHEF: A Framework for Accelerator Optics and Simulation

Jean-Francois Ostiguy\* Leo Michelotti Fermilab



J.F. Ostiguy - ICAP 2006, Chamonix



1

- Around 1990, L. Michelotti initiated development of a suite of libraries dedicated to accelerator simulation, with a focus on nonlinear dynamics. The libraries would take advantage of Automatic Differentiation, a then emerging technique (AD was pioneered by M. Berz, especially in the context of Accelerators)
- (a) C++ was chosen as implementation language because of its comprehensive support for operator overloading.
- Vision: a framework allowing one to construct applications treating "scalar" and high order computations on the same footing.
- In simple terms: a formal substitution of the type JetParticle for the type Particle results in high order derivatives computed automatically during tracking. First order tracking = traditional linear optics. At least that is the propaganda ... ;-)

**Fermilab** J.F. Ostiguy - ICAP 2006, Chamonix

# Library Hierarchy



# A new project: CHEF

## Started in mid-2003, with the following goals:

•Convenient, intuitive, interactive. General purpose <u>optics</u> computations - high priority

•General framework applicable to problems relevant to future machines.

• preserve original vision of a common infrastructure for both linear and nonlinear analysis

reuse existing code base as much as possible

•runs on std platforms (win32,linux)



# Reality Check

The original design of the DA engine had flaws that became to painful to ignore:

 1st order (optics) computations slower than with a conventional, matrix-based code

•Generally, (mxyzptlk) efficiency not competitive with that of other DA engines (e.g. COSY)





# ssues

•DA objects (Jet) have a large memory footprint, even when sparsity is taken advantage of.

- •Copying such objects is **expensive** !
- •Overloaded operations generate temporary copies, some necessary, many <u>not</u>
- Strategy: make the computational cost of multiple copies trivial; eliminate unnecessary copies and optimize the cost of necessary allocations.

•searching (finding a specific monomial within a sparse set) is expensive !

Strategy: Use algorithms that no not require search !



# Overhaul of the DA Engine (mxyzptlk)

•dlist representation previously used for polynomials eliminated
•sparse representation preserved
•new algorithms; basic ops (add, mult) now using based on "register" or "scratchpad" (no search !)
•more compact, efficient monomial indexing scheme
•extensive use of templates, smart ptrs and specialized memory management techniques to address the temporaries issue.
•transparent and further optimized 1st order mode

#### Current Status:

first order computations with DA engine now compares favorably with conventional matrix-based codes
higher order computations efficiency competitive with other DA engines





# Some Mxyzptlk (DA Engine) features

•Order, no of variables, and ref point can be changed dynamically

•Mixed complex and double (Jet) arithmetic (automatic implicit conversion)

Decoupled interface and implementation

templated code

Minimal, fully dynamic memory footprint





# CHEF – Some Current Capabilities

•Coupled/Uncoupled optics. **No** implicit assumption about reference orbit, not even when positioning them.

- •Misalignments can be arbitrary in 3D space; no implicit assumption about magnitude.
- tracking with physics fully decoupled from geometry and user overridable (n=0 conventional tracking, n=1, linear optics). Single particle or bunches (distributions)
- •Nonlinear maps , normal form analysis
- •fully python scriptable (most lib public interface exposed)
- •MAD8 lattice format
- database connectivity (survey data, multipoles)
- Runs natively on Windows, Linux, Solaris and (soon on Mac/OS-X) Interface based on Qt; no platform specific code in the underlying libraries.





### Element Positioning: 4-magnet chicane



# What we get (e.g. MAD) ???



# Python Bindings

- Python is an excellent "impedance match" for c++.
   Operator overloading, inheritance relations have direct equivalent and can be preserved
- Bindings based on boost.python. No special binding generator is used; just a c++ compiler + boost.python header files. Exported interface specified in c++, in a declarative style reminiscent of I DL.
- A "mapped" Python object can override an exposed c++ method
- C++ objects can invoke a python method



### Screenshots





#### **Interactive Parser**

| CHEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>File Edit</u> Calculations Controls <u>T</u> ools Examples <u>W</u> indows <u>D</u> evices Database <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Elle Edit Calculations Controls Tools Examples Windows Devices Database Help           Name Type Azimuth         Lex           Name Type Azimuth         Manuel Status and | 25%/chef-mdi/input_files/tevgen2_v3h01v2_new_new_lat<br>25% - 0.782/2.0<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36%<br>36% |





#### **Beamline Browser**

| CHEF Beamline Browser                   |            |                  | CHEF: Lattice Fur      | stigns (unsourbid): TEVEO                                                       | -  | 161 |
|-----------------------------------------|------------|------------------|------------------------|---------------------------------------------------------------------------------|----|-----|
| me                                      | Туре       | Azimuth          | File Ontions Data      | Heln                                                                            |    |     |
| TEVEO                                   | beamline   | 0-6283.19        | <u>Lie opions baar</u> |                                                                                 |    | _   |
| . E SEXTANTE                            | beamline   | 0-1047.2         |                        |                                                                                 |    |     |
|                                         | heamline   | 0-32.4798        |                        |                                                                                 |    |     |
|                                         | beamline   | 32,4798-299,223  | 8                      |                                                                                 |    |     |
|                                         | beamline   | 299 223-566 913  | 300 -                  | ······                                                                          |    |     |
| ↓ <b>‡</b> F21                          | heamline   | 299 223-328 966  | 1963939<br>(1          |                                                                                 | 30 |     |
| E22                                     | heamline   | 328 966-358 71   |                        |                                                                                 |    |     |
| E 22                                    | beamline   | 259 71 299 452   |                        |                                                                                 |    |     |
| E24                                     | beamline   | 388 453 4 18 195 |                        |                                                                                 |    |     |
|                                         | beamline   | 418 105 447 04   | 250                    |                                                                                 |    |     |
| E25                                     | heamline   | 447.94.477.683   | 250-                   |                                                                                 | 25 |     |
| E27                                     | beamline   | 477 683 507 427  |                        |                                                                                 |    |     |
| E = = = = = = = = = = = = = = = = = = = | beamline   | 507 427-527 17   | 1                      |                                                                                 |    |     |
| E = E = 20                              | beamline   | 537 17 566 012   |                        |                                                                                 |    |     |
|                                         | beamine    | 557.17-500.915   | (1)<br>(1)             |                                                                                 |    |     |
|                                         | beamine    | 500.915-804.801  | 200 -                  | ┃                                                                               | 20 |     |
| ME22.colleged                           | beamine    | 500.913-590.037  |                        |                                                                                 |    |     |
| • MESZ.celiman                          | menker     | 506.915          | 8                      |                                                                                 |    |     |
|                                         | beamine    | 566.913-569.225  |                        |                                                                                 |    | ds  |
|                                         | ann        | 507.174          | 5                      |                                                                                 |    | ers |
| HBPMES                                  | r J-16     | 567.174          | ta 150 -               | ┫╺╍╍╍┊╍╍╍╍╍┉┊╢╸╍╍╍╎╸┫╸┪╡┪┪╗╗╝                                                   | 15 | io  |
|                                         | i ann      | 567.374          | ă .                    |                                                                                 | 13 | -   |
|                                         | quadrupoie | 569.055          | 25                     |                                                                                 |    | Ξ   |
|                                         | am         | 509.225          |                        |                                                                                 |    |     |
| PACKES2                                 | beamine    | 509.225-571.054  |                        |                                                                                 |    |     |
|                                         | beamline   | 571.054-577.454  | 100 -                  |                                                                                 | 10 |     |
|                                         | beamline   | 577.454-583.855  | 100 -                  |                                                                                 | 10 |     |
|                                         | beamline   | 583.855-590.256  |                        | ▋ & {\$}{\} {\$ } \                                                             |    |     |
|                                         | beamline   | 590.256-596.657  |                        | ╢ ^ / \? \? \? \? \? \? \? \? \? \? \? \? \?                                    |    |     |
|                                         | beamine    | 596.657-626.4    | 2                      | 1₩ / \/ 1¥ V \/ \/ \/ / / # # . \/ \/ /      \ 1 \ 1 _       \ 1 \ .  /         |    |     |
| ±* = ±34                                | beamline   | 020.4-050.144    |                        | 1N/ V X A X V.V X.√\8/\V\\ / \V X 8 \V X A X VE                                 | 5  |     |
| E35                                     | beamine    | 605 007 715 65   | 50 -                   | ▓▖▝▌▖▝▌▖▚▖▖▌▖▓▖▓▖▓▖▓▖▓▖▓▖▓▖▝▋▖▋▖▋▖▋▖▋▖▋▖▌▖▋▖▌▖▋▖▋▖▋▖▋▖▋▖▋▖▋▖▋▖▋▖▋▖              | 5  |     |
| E30                                     | beamine    | 715 62 745 274   |                        | ₩\_{\_BV_V\_V\_V\_V\_V\_V\_V\_V\_U                                              |    |     |
|                                         | beamine    | 7 13.03-745.374  | 8                      |                                                                                 |    |     |
| ±- ± 58                                 | beamine    | 743.3/4-//5.11/  | 8                      |                                                                                 |    |     |
|                                         | beamine    | 773.117-804.801  | 8                      |                                                                                 | 0  |     |
|                                         | beamline   | 804.861-1017.89  | 0 -                    |                                                                                 | 0  |     |
| ±- €42                                  | beamline   | 804.861-834.604  |                        | 2800 3000 3200 3400                                                             |    |     |
| ±- €43                                  | beamline   | 834.604-864.347  |                        |                                                                                 |    |     |
| ≝- <b>≣</b> E44                         | beamline   | 864.347-894.091  |                        | Arc Length [m]                                                                  |    |     |
| ± <b>£</b> 45                           | beamline   | 894.091-923.834  |                        | - Horizontal Beta - Vertical Beta - Horizontal Dispersion - Vertical Dispersion |    |     |
| . <b>E</b> 46                           | beamline   | 923.834-953.578  |                        |                                                                                 |    |     |





## **Optical Functions**



J.F. Ostiguy - ICAP 2006, Chamonix

**‡**Fermilab

ICAP

2-6 Oct. 2006

### **Database Connectivity**





## Scripting: Automatic Differentiation



J.F. Ostiguy - ICAP 2006, Chamonix

17

2-6 Oct. 2006

## Python Scripting – Tracking Demo







### **Tracking Demo - Results**



🛟 Fermilab



# **Trajectory Tracer**



Persistent displayOpenGL rendering





### Phase Space Tracker



•Persistent display •OpenGL rendering

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_5.jpeg)

## Phase SpaceTracker - 3D Phase Space Projection

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_4.jpeg)

### Site Viewer

![](_page_22_Figure_1.jpeg)

OpenGL rendering
Search capability
floor coordinates generation

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_5.jpeg)

# Status and Plans

- After much effort, CHEF and its libraries are beginning to be applied to real problems
- Code base currently used at FNAL to
  - 1. study emittance preservation in the ILC (P. Lebrun). Newly developed linac-specific functionality (e.g. wakefields, RF structures) will be integrated. Good agreement with codes like LIAR and Merlin
  - used by Synergia (3D space charge tracking by P.Spentzouris & J. Amunson)
- Near term (on going work):
  - full xsif parsing;
  - apertures and loss patterns,
  - matching.
  - library capabilities available through the user interface

![](_page_23_Picture_12.jpeg)